
Ab-Aio65 428 IMPLEMENTATION OF A NATURAL LANGUAGE PROCESSOR USING 1/1
FUNCTIONAL GRAMMAR(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA F G ORCHARD DEC 85

UNCLASSIFIED F/G 9/2 NL

Elf~~- .. wA.Ii

111111M

111.25 11.4 11

MICROCOPY RESOLUTION TEST C4-IA1

NA IONAL URI AU OF SIAN A DS -I ' -

%.

O4.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
IIELECTE I

A1 DCDD

THESIS
IMPLEMENTATION OF A NATURAL LANGUAGE
PROCESSOR USING FUNCTIONAL GRAMMAR

by

Fred G. Orchard

December 1985

LJ.. J

Thesis Advisor: Roger G. Marshall

9Approved for public release; distribution is unlimited

86 3 19 043

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATIONDOWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate Schoo
(if applicabe)

N 52 Naval Postgraduate School
6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5100 Monterey, CA 93943-5100

Ba. NAME OF FUNDING/SPONSORING lb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appiiable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification)

IMPLEMENTATION OF A NATURAL LANGUAGE PROCESSOR USING FUNCTIONAL GRAMMAR

12 PERSONAL AUTHOR(S)
Orchard, Fred G.

13a, TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS. PAGE COUNT
Master's Thesis FROM TO 1985 December 81

16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesrsay and identify by block number)
FIELD GROUP SUB-GROUP Functional Grammar, Natural Language Processor,

Pragmatics, Predications

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis presents the design and implementation of a natural language
processor using Functional Grammar. Traditionally, grammars have consisted
of a set of words and a set of semantic and syntactic rules which combine
the words to form sentences. Thus, the language is looked at as a
syntactic structure which is used to derive meaning. Functional Grammar
looks at language as a means of social interaction and applies the
syntactic and semantic rules only after the meaning, based on pragmatics,
of the sentence has been established. Prolog has been used to demonstrate
how Functional Grammar can be used to provide that meaning.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0UNCLASSIFIEDAJNLIMITED C3 SAME AS RPT. 3OTC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Prof. MacLennan (408) 646-2509 Code 52M1

O FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

1

Approved for public release; distribution is unlimited.

Implementation of a Natural Language Processor
Using Functional Grammar

by

Fred Gregg Orchard
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1973

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1985

Author: ___________________________
Fred Gregg Orchard

Approved by: 4'.

Ro er a. z l ThOsis Advisor

Jo Readr

.'.Vincent Y. Lu irman,
.:- ,Department of C mputer Science

W41
Kna.-r-ach~

Dean of Information and Pc y Sciences

2-Zc

4 ABSTRACT

This thesis presents the design and implementation of a natural

language processor using Functional Grammar. Traditionally, grammars

have consisted of a set of words and a set of semantic and syntactic

rules which combine the words to form sentences. Thus, the language is

looked at as a syntactic structure which is used to derive meaning.

Functional Grammar looks at language as a means of social interaction

and applies the syntactic and semantic rules only after the meaning,

based on pragmatics, of the sentence has been established. Prolog has

been used to demonstrate how Functional Grammar can be used to provide

that meaning.

-i

Accesion For
NTIS CRAft:

Unannounced 0
Justificatioji E

Ditue 1yAvailability Codes

Dft Avail d'id/Ior

I SPL-Chdu

TABLE OF CONTENTS

I. INTRODUCTION--- 6

A. TRADITIONAL GRAMMAR-- 7

B. TRANSFORMATIONAL GRAMMAR----------------------------------- 7

C. CASE GRAMMAR--- 11

D. CONCEPTUAL ANALYSIS-- 13

E. FUNCTIONAL GRAMMAR--- 13

ii. FUNCTIONAL GRAMMAR--- 18

A. PREDICATIONS--- 19

B. TERMS-- 21

C. SEMANTIC FUNCTION HIERARCHY-------------------------------- 22

D. PRAGMATIC FUNCTIONS-- 24

E. EXPRESSION RULES--- 27

III. PROGRAM DESCRIPTION-- 31

A. APPROACH--- 32

B. CONSTRA INTS-- 41

.5IV. PROGRAM RESULTS-- 43

V. CONCLUSIONS-- 48

APPENDIX A- PROGRAM LISTING-- 5

AP E D X T S 1 - - - - - - - - -- - - - - - - - - - - - - - - -7

APPENDIX C- TEST #2-- 74

APPENDIX C- TEST #3-- 74

LIST OF REFERENCES-- 78

*BIBLIOGRAPHY-- 79

INITIAL DISTRIBUTION LIST--- 8

ACKNOWLEDGMENT

This thesis was written under the direction of Professor Roger G.

Marshall. His exceptional knowledge of Functional Grammar in particular,

and of Computer Science in general, was an inspiration and an invaluable

asset in the completion of this project.

V5

I. INTRODUCTION

Many attempts have been made to program computers to understand

natural language. Terry Winograd's "Programmer" project provides an

excellent example. [Ref. 1:pp. 80-1083 Natural language processing is

necessarily based on grammars that have been developed by linguists.

Although many grammars have been developed, Noam Chomsky's

Transformational Grammar has been in the forefront of linguistic study

for the past 30 years. Recently, Simon C. Dik proposed a new grammar,

based on a functional paradigm. Most grammars are based on the idea

that languages are a set of sentences. Dik's Functional Grammar (FG) is

based on the concept that language is a means of social interaction.

His ideas mark a radical departure from the current theories. [Ref. 2 :p.

13 This thesis will attempt to provide a working model of FG utilizing

Prolog as the implementation language. The program will evaluate a

paragraph of text and return the theme of the paragraph. It will also

determine whether the paragraph is consistent in its theme.

To understand FG, a discussion of some major grammar theories is

needed. A discussion of Traditional Grammar, Transformational Grammar,

Case Grammar, and Conceptual Analysis will trace the history of grammar

theory in the twentieth century and provide the background necessary t:

understand FG.

[74 6

'A L-r.Y

A. TRADITIONAL GRAMMAR

Traditional Grammar is the grammar that most laymen recognize. It

is the grammar borne out of a necessity to educate millions of

youngsters in a formal manner. Traditional Grammar is based on a set of

definitions and prescriptive rules. The definitions are those such as:

* A NOUN is a person, place, or thing.

* A SENTENCE expresses a complete thought.

Prescriptive rules are those such as:

" Never split infinitives.

" Don't end a sentence with a preposition.

The grammar is taught by counterexample. That is, a student is

presented with sentences which he must make "right" by application of

the given rules. It develops in one an intuitive understanding of the

language, but does not give the user an explicit algorithm fcor

constructing sentences.

B. TRANSFORMATIONAL GRAMMAR

The break from the traditionalists came in the 1950~'s. Linguists

were generally divided into two groups. The first group, known as the

structuralists, believed that languages were derived separately and

that any commonality between languages was purely coincidental. The

other group explored the possibility that all languages came from a

single source or maybe only a few sources. This theory would explain

similarities between languages and suggest a possible vehicle for

evaluating all languages in the same manner.

7

Among this latter group was Noam Chomsky. In 1957, he published

Syntactic Structures.ERef. 3] In this, he developed his theory of

Generative-Transformational Grammar or as it is more commonly known,

Transformational Grammar (TG). In 1965, he refined and modified his

theory in Aspects of Syntactic Theory. [Ref. 43 This book was

destined to become the yardstick by which all new grammars were

measured.

Transformational Grammar gives explicit rules for processing

sentences. These rules are of two types (1) Phrase Structure Rules

(PSR) and (2) Transformational Rules (TR). The "surface structure" of a

sentence is the readable form, that is, the way it appears in print.

PSRs provide a path from the sentence's surface structure to its "deep

structure". The deep structure provides a description of the syntactic

functions that each word performs in the sentence, and with the

exception of SI, is in a one-to-one correspondence with the surface

structure. SI is an indicator of the type of sentence. From this deep

structure, TR's are used to transform the sentence back into surface

structure and into other deep structures with similar meanings. An

example will clarify this process. The following is a set of PSR's:

(1) Sent -> SI + NP + Aux + VP
(2) SI -> (pos) I (neg) I <corn) i (quest) i (pass)
(3) VP -> V + NPIPPIAdjIe
(4) PP -> Prep + NP
(5) NP -> (Articlele) + N + (Sentle)
(6) Aux -) Tense Marker + (Modalle)
(7) Modal -) (can)I(may>l(shall)l(will>

SI=Sentence Indicator, NP= Noun Phrase, VP= Verb Phrase,
*.- PP= Prepositional Phrase, e= empty

(1) The man went to the store.

o~ .~, 8

..A , .. '' . ;.-''. Z. <''''' _- % " '" " i ." -, .' . ." - -"i •.'b

Sentence (1) will be transformed from the surface structure to the deep

structure by use of the above PSR's. Brackets are used for

clarification. Sentence (1) is diagramed in Figure 1.lERef. 5:pp.

X I~ 78-S03

STEP RULE

a. Sent-)SI +* NIP Aux + VP 1

b. Sent-) tpositiveJ+ NP + Aux + VP 2

c. Sent-) (positiveJ+U(Prticlele)+N+(Sent Ie)3+Aux+VP 5

d. Sent-> Epositive]+Ethe+man]+Aux+VP

e. Sent-) (posit iveJ+Cthe+man3+ETense Marker+(Modal le) J+VP 6

f. Sent-) tpositiveJ+(the+man]+(past3-YP

g. Sent-) (positive]+(the+manJ+(past3+[V+PP3 3

h. Sent-) Epositive3+Ethe+man]+(past3+Ego+[Prep+NP3] 4

i. Sent-) rpositive)+Ethe+man3+[past)+(go44to+[Article+N33) 5

j. Sent-) Epositive3+lthe+man3+CpastJ+(go+(to+(the+store]JJI

.................
...

s 4 Tense VPP,

the man pst go Prep NP

to A N

theW store

Figure 1.1 Sentence (1) Diagram

Transformational Rules provide a means of changing the form of the

sentence. There are many types of TR's. Some TR's, such as the question

transform, the negation transform, and the command transform, change

the meaning as well as the structure. For example, applying the

question transform to the sentence above results in the surface

* - structure "Did the man go to the store?". To make the transformation

requires two steps. First, the deep structure of the sentence is

changed to reflect the new form. Then the new surface structure is

derived from the new deep structure. Some TR's do not change the

meaning, yet they must also have their deep structure changed in order

- I to arrive at the new surface structure. This requirement to change the

deep structure of a sentence in order to transform it is one of the

deficiencies of TG. The deep structure should express the meaning of

the sentence, but in the case of TS, it must be changed for different

configurations of the same sentence. Consider the following sentences:

(2) John read the book.

(3) The book was read by John.

Sent

S I NP fluxV

sO Joh n Tese V NP

read A N

the book

Figure 1.2 Sentence (1) diagram

Tense T Mdal VPP

Kthe boo past is read Prep N

by John

Figure 1.3 Sentence (2) diagram

'2. Figures 1.2 and 1.3 show the diagrams of sentences ((2) and (3),

respectively. While it is true that syntactically, these sentences are
0,

different, semantically they are the same. "There exists a book which

was read by John." As will be seen later, Functional Grammar treats

this situation in a completely different manner. [Ref. 5:pp. 81-883

; "C. CASE GRAMMAR

When Chomsky published his Aspects of the Theory of Syntax,

0 many linguists questioned the primacy of syntax. Among these was

Charles Fillmore. Fillmore subsequently published "A case for Case"

where he presented his new C se Grammar (CG).[Ref. 6] Fillmore

t- maintained that the semantics of a sentence should dictate the syntax

of the sentence. To illustrate this, he developed a set of semantic

" cases. These cases, although not exhaustive, are considered the minimum

necessary to adequately process a language.

* Agentive (A)- the person or animate object that performs theK action specified by the verb.

.- 11

Si %. . .

* Instrumental (I)- the object or force used by the verb.

* Dative(D)- the person or animate object affected by the verb.

* Factitive (F)- the object or being resulting from the action

of the verb.

• Locative (L)- the location or orientation specified by the verb.

* Objective (0)- things that are affected by the action of the verb.

A sentence is composed of two parts, modality and proposition (Sent

-) M+P). Proposition is further decomposed into a verb and a number of

cases, results in the following construction: Sent -) M + V + C1 + C2 +

...+ Cn. The cases are from the above list. A sample sentence might be

* decomposed as follows:

* John gave the book to Mary.

a. Sent-) M + V + C1 + C2 +...+ Cn

b. Sent -) past + V + C1 + C2 +...+ Cn

c. Sent -> past + give + CI(A) + C2(O) + C3(D)

d. Sent -> past + give + John + book + Mary

John is the Agentive case, book is the Objective case, and Mary is the

Dative case. By this process, Fillmore was able to capture some of the

semantics of a sentence. But CG was still a Transformational Grammar

requiring transforming of the deep structure to change a sentence into

a similar sentence with the same meaning. Additionally, Fillmore's

cases were hardly exhaustive and did not capture the context of a group

of sentences.[Ref. 6:pp. 21-31]

S.L

;,.,.12

'? . ,, -,,o. :, . -,.,- j.-. ... '.-, ,.. . . , ,.I,. '.a ... - .- , - ., , , , . , ,. *, * ,

D. CONCEPTIONAL ANALYSIS

At about the same time that Fillmore was developing his Case

. Grammar, Roger Schank presented a new approach to natural language

processing. He felt that transformations of structures and syntactic

parsing were not the right direction for natural language processing.

Instead, he offered his theory of Conceptional Analysis of

Language(CAL). CAL deals with the meaning of the sentence rather than

the structure and the syntax. Thus sentences such as (4) and (5),

below, have the same meaning even though their structures are quite

N different.

(4) John gave the book to Mary.

(5) The book was given to Mary by John.

, Schank developed a set of conceptual cases. These cases, which were

language independent, would capture the conceptual content of a word or

phrase. A sentence was evaluated and each time a word or phrase was

encountered which had the meaning of a particular conceptual case, that

case was substituted for the word or phrase. At the end of the sentence

evaluation, one meaning was achieved. A program using this approach was

developed at Stanford University.[Ref. 7:pp. 187-2473

E. FUNCTIONAL GRAMMAR

Shortly after Transformational Grammar and Case Grammar gained

respectability, Simon Dik published a dissertation challenging

Chomsky's Transformational Grammar. His main criticisms were that the

treatment of syntax and semantics was inadequate and that a

non-transformational method was possible. He formalized his theory of

13

Functional Grammar in 1978 with the publication of Functional

Grammar. Dik based his theory on Functional Grammar on two

principles:

(1) A language system should be more than just a grammar that
conforms to a set of syntactic rules. It must also be able to
explain the ultimate use of the rules and how they are
interpreted.

(2) A language system should be devised so that it can most easily be
incorporated into a wider pragmatic theory of verbal
interaction. [Ref. 2:p. 23

Dik's theory of Functional Grammar differs from Transformational

Grammar in some very basic ways. Transformational Grammars are defined

by a set of syntactic rules. These rules state that a noun phrase must

be followed by a verb phrase, or a noun phrase may be preceeded by an

adjective, etc. Because of this dependence on the syntax of the

language, the language is forced into a priority system where syntax

comes first, followed by semantics, and lastly by pragmatics. On the

other hand, Dik's Functional grammar has the language being defined as

* . a method of social interaction. Starting from this premise, Dik ends up

with a priority system that places pragmatics at the top of the list,

followed by semantics, and lastly by syntax.

A Functional Grammar should be able to adequately recognize all of

the linguistic expressions of a particular language. This requires

defining rules which cover what Dik terms "the most significant

generalizations of the language."[Ref. 2:p 6) Standards of adequacy are

used in grammar development as a baseline assessment tool. After

exploring the many standards available, Dik established three standards

of adequacy that he felt FG had to conform to in order to be usable.

14

The first of these is pragmatic adequacy. This is the heart of

Functional Grammar theory. A Functional Grammar must recognize the

properties of lingustic expressions from the everyday use of the

language. Dik believes that PG needs to resolve the pragmatic aspect

before any resolution of the semantic and syntactic functions of a

linguistic expression can be attempted. If such is the case, then it

shall be considered pragmatically adequate.

The second standard is that of psychological adequacy. To be

considered psychologically adequate, a Functional Grammar must be

consistent with strongly established and supported psychological

S. hypotheses about language. An example of this type of concern would be:

0: How did you arrive?

A: By United.

Without knowledge of airline company names, one might not understand

-> the answer to this question. This is a general expression accepted in

P our language yet not served by any syntactic, semantic, or pragmatic

I rules. It is therefore contained in what Dik considers psychological

* issues.

The third and last standard is that of typological adequacy. A

7W Functional grammar must be applicable to typologically different

languages while at the same time addressing the similarities and

differences of the languages. A Functional Grammar that accomplishes

this would be considered typologically adequate. tRef. 2: pp 6-9)

'SVN

A grammar can fail in two ways. It can be so constrained that it

does not include expressions that assure that it attains descriptive

* adequacy. That is, it does not fully describe the expressions that the

language requires. On the other hand, it could be so large that too

much is included. Functional Grammar's approach to this is to restrict

the range of descriptive devices allowed. This is accomplished in three

w'ays.

Functional Grammar uses very few transformations. Transformations

*are of two types, those that effect changes in pre-established

* srucure an "structure sensitive" transformations. The latter are

rules in which the elements are affected by the environment that the

rule is in but do ncot alter the structures. Functional Grammar does not

allow transformations of the first type with the one exception that it

allows for deletion of variables in certain situations. Essentially, no

other structure changes are allowed.

Functional Grammar uses no filtering devices, which are used

extensively in transformational grammars. A set of expressions is

4 9xparided into a Larger superset of expressions which are used to

evaluate sentences that are not in the orthodox form of (noun

phrase) (verb phrase). After evaluation of the sentence, the useless

structures of the set are "filtered out." This allows a lot of freedom

-. but adds extra structures that later must be discarded. Functional

Grammars strive to immediately recognize the target set of well-formed

- expressions thereby negating the need for filtering devices.

unctional Grammar also differs in its treatment of lexical tes,

The lexical items are the basic words, punctuation, arid their usage.

16

The abstraction of a grammar is constrained by its definition of

lexical items. As a grammar gains more and more lexical items, the

possible combinations grow exponentially. A grammar must deal with all

of these combinations. Most grammars do so by constraining the number

of lexical items, which in turn constrains the grammar. Because

Functional Grammar puts the treatment of lexical items at the bottom of

its priority list rather than the top it is less constrained than

traditional grammars.[Ref. 2:pp 10-121

Functional Grammar is a radical approach to linguistic theory when

looked at from the Chomsky point of view. However, it compares

favorably with the traditional approach. The traditional approach

allows one to develop an intuitive understanding of the grammar but it

does not provide an algorithm to build the language. Functional Grammar

maintains that intuitive understanding, Dik's "method of social

. interaction," and provides the algorithm missing in Traditional

Grammar.

17

.................... .-r

II. FUNCTIONAL GRAMMAR

In Functional Grammar, language is defined first to be an

instrument of social interaction, which is opposed to Transformational

Grammar's view of language as being a set of sentences. To provide a

framework in which the FG definition will work, Functional Grammar

utilizes the following definitions:

* Predication -an expression that governs the application of

a predicate to an appropriate number of terms functioning as

arguments of that predicate.

* Constituent -a term acting as an argument of a predicate.

* Syntactic function - the role a constituent plays in presenting

the perspective from which the state of affairs is presented in the

linguistic expression.

* Semantic function - the meaning a constituent has within thE state

of affairs presented in the predication.

* Pragmatic function - the informational status of the constituent

V * in the context that the predication exists. ERef. 2:p. 13)

In this framework, pragmatics is seen as the most important function,

* followed by semantics and lastly by syntax. Functional Grammar provides

a structure, the predication, that encompasses the syntactic, semantic,

- and pragmatic meanings of all of the constituents of a sentence. The

primary emphasis in Functional Grammar is on the meaning of each

constituent, not on where it is located in the sentence. Only after the

constituents' meanings have been established is syntactic placement

18

d.

.I.

given consideration. This is done through the application of expression

rules.

I! A. PREDICATIONS

- Predications form the basic components of Functional Grammar. Each

predication is based on a single predicate from the lexicon. The

lexicon consists of the basic terms of the grammar and the basic

predicate frames. The basic terms and predicate frames are described

below. A predication describes a complete thought. More often this is a

sentence, but it may be a partial sentence, as, for example, in a

compound sentence. The predication is expressed by means of a structure

called a predicate-frame.

(1) (p AI(X1) A2(X2) ... An(Xn)J
CAT

The predicate-frame provides the following information.

* The predicate. Ip)

* The category of the predicate. (Verb, Noun, Adjective)

* The argumeit positions. (Xl,X2,...,Xn)

* The semantic function of each argument. (Agent, Goal, Recipient,

etc.)

* The selection restrictions for each argument. (A1,A2,...,An)

The predicate-frame in (1) is a nuclear predication. This means it has

the minimum number of arguments and their types which are needed to

express a complete thoight for a given predicate. For example,

S

(2) give (Xl:Animate(X1)) (X2)
' VERB AGENT GOAL

(X3:Animate(X3))
RECS

19

-S!:J

4:". .. " " . t " " ' ". ' . . ." ' .. ." .' -" " ,
. , . '

, . , ., , . - - - - . , , .. . - ,

.'..i•c "- u""""""", ." , .>:*, • "..v3.% § I.',PZ<.S&& ", k,.' ", ' '"% '. : ";'' - + '."'-"" ': , - >. ' - ": - ' "

The predicate is 'give', of category VERB. There are three arguments;

X1, X2, and X3, whose semantic functions are AGENT, GOAL, and

RECIPIENT, respectively. Additionally, X1 and X3 are restricted to

being animate objects. A predication in the form of (2) is said to be

an open predication. It gives all of the semantic arguments and their

attributes that are required to form a complete sentence using that

verb. When all of the arguments have been filled, the predication is

- "considered fully specified.

A predication may have mope semantic functions added to it for

further clarification. This is done through satellites. Satellites are

specified in the same manner as the arguments in (1) and they would be

represented by YIY21 ...,1Yn, along with B1 ... Bm which represent the

selection restrictions for the satellites.

(3) {[p AI(X1) A2(X2) ... An(Xn)] BI(Y1)
CAT

B2(Y2) ... Bm(Ym)}

The semantic functions of the arguments together with the verb provide

*.. a state of affairs for the sentence.

There are four states of affairs: action, position, process, and

state. These are defined by two processes, (+) control and

(+)dynamism. These are shown in Table 2.1. Control implies that a

being in the sentence controls what is happening. Dynamism implies that

something is taking place as opposed to describing a situation. Verbs,

such as run and stand, may be used in more than one state of affairs.

It is their relationship to the semantic functions of the arguments

20

-4.

=.4 °
• -4 ,. . % °. " . " - ° . . " "° " . " - ° . " o " " °- " , ° - ' .

that defines the state of affairs. In sentence (4), Bill controls the

action in a dynamic setting. In sentence (5), Bob controls the act of

standing, but is in a static setting. In sentence (6), the refrigerator

does not control, but it is a continuing or dynamic situation. In

sentence (7), the car does not control its color and (7) merely

describes a static situation.[Ref. 2:pp. 25-393

. (4) Bill ran down the street. (action)

(5) Bob stood on the corner. (position)

(6) The refrigerator is running. (process)

(7) The car is blue. (state).

Table 2.1 States of Affairs

controlled uncontrolled

dynamic action process

non-dynamic position state

B. TERMS

The argument slots are filled with terms, which are found in the

lexicon of the grammar. Terms are nouns, verbs, and adjectives. They

are defined thus:

(8) (wXi : p(Xi))

w is a term operator which describes whether the term is definite or

indefinite, singular or plural. p(Xi) is a predication. The phrase 'the

ten butterflies' would be expressed:

(9) (10dXi : butterfly (Xi))
N

21

lli -i
" " 1 ." ti % " . . . -t- . -. "~~ .. -. -. ".."-Jt. "-.n "- " -'.- "" "." "- % "-' -" ".".. - '. , '"c .'.'.... ,.

Terms may be modified by use of referents. Referents normally take the

form of adjectives and are added to the term in the following way.

(10) (wXi : pl(Xi): p2(Xi): ... pn(Xi))

In the phrase 'the ten bright orange butterflies', the referents are

'bright' and 'orange'. The phrase would be expressed as:

(11) (10d Xi: butterfly (Xi): orange (Xi): bright (Xi))
N A A

This phrase could then be inserted into an argument slot of a

predication.

C. SEMANTIC FUNCTION HIERARCHY

Dik has established what he terms a Semantic Function Hierarchy

(SFH). The hierarchy establishes a relationship between various

syntactic and semantic functions that is language independent. The

S.. ordering/hierarchy is as follows:

Agent)Goal) Recipient) Beneficiary) Instrument)Location) Temp

Each noun term in a sentence is assigned a semantic function.

Additionally, one of the terms is also assigned the syntactic function

SUBJECT. Once that term has been identified, its semantic function is

marked in the SFH. Tien, if a syntactic function OBJECT exists in the

sentence, the word which has this function must have a semantic

function that is to the right of the semantic function that was marked

;-' -for SUBJECT. Each language may have sentences that place the SUBJECT in

-.i. various positions in the hierarchy, but a cut-off point is generally

established where asssignment of SUBJECT to semantic functions beyond

that point results in poorly formed or nonsensical sentences. The

cut-off point for English is BENEFICIARY. At or near the cut-off point,

22

it is more difficult to find sentences that are "good English". The

following sentences illustrate some of the possible SUBJECT and OBJECT

assignments. The last sentence illustrates a sentence that tries to go

beyond the cut-off point. It is clearly a poorly formed sentence.

a. Bill gave the bread to Tom
AG-SUBJ GO-OBJ REC

b. Bill gave Tom the bread
AG-SUBJ REC-OBJ GO

c. Bill bought Tom the bread
AG-SUBJ BEN-OBJ GO

d. The bread was given to Tom by Bill
GO-SUBJ REC-OBJ AG

e. Tom was given the bread by Bill
* REC-SUBJ GO AG

f. Tom was bought the bread by Bill
BEN-SUBJ GO AG

g. In the kitchen was brought the bread for Bill
LOC-SUBJ GO REC

These relationships are shown in Table 2.2. [Ref. 2:pp. 70-753

Table 2.2 Subject-Object Relationship

Semantic Functions

AGENT GOAL REC BEN

a SUBJ OBJ
b SUBJ OBJ
c SUBJ OBJ
d SUBJ
e SUBJ
f SUBJ

23
9. .

' - - .-

D. PRAGMATIC FUNCTIONS

A predication that has been assigned semantic functions, syntactic

functions, and a state of affairs appears fully specified. But certain

situations are not represented. Consider the following sentences.

(12) BILL drove to Chicago.

(13) Bill DROVE to Chicago.

(14) Bill drove TO Chicago.

(15) Bill drove to CHICAGO.

By emphasizing a different word in each sentence, a different meaning

is achieved. To account for such differences, it is necessary to

consider the speaker's context, his assessment of what he means, the

6
addressee's assessment of what he has heard, intonation, etc.

Functional Grammar provides a set of four pragmatic functions to deal

with these situations. The assignment of pragmatic functions to a

predication will result in a fully specified predication.

The four pragmatic functions are TOPIC, FOCUS, THEME, and TAIL. The

latter two are external to the predication while the first two are

internal to the predication. The pragmatic function THEME describes the

universe of discourse of a given predication. It is normally associated

with left-dislocated phrases such as:

S.- (16) That girl, I like her.

The second external pragmatic function, TAIL, describes an afterthought

or something that clarifies the predication. It is normally associated

with right-dislocated phrases, such as:

(17) She's a nice lady, my wife.

Functional Grammar assumes that THEME and TAIL are external to the

24

-- -. o.

predication and i uses the following representational schema:

(18) (Xi)THEME, Predication, (Xj)TAIL

where Xi and Xj are FG representations of the phrases.

Internal to the predication, Functional Grammar utilizes two

pragmatic functions. TOPIC describes a constituent about which the

predication predicates something. FOCUS represents the relatively most

important information with respect to the pragmatic concerns of the

speaker and the addressee. TOPIC and FOCUS may be assigned to any

* constituent in the predication, including the verb. A sentence does not

necessarily have all four pragmatic functions assigned. Most often,

only the internal functions will be assigned.

It is in the treatment of a text or sentence grouping that the

external functions play a major role in Functional Grammar. Consider

the following paragraph.

(19) John gave Mary a book. Mary gave Bill some money. Bill gave

Tom a coat.

Analyzing the first sentence by itself might result in various

assignments. John might be assigned as TOPIC and Mary as FOCUS. Book

could also be assigned as FOCUS. The assignment might depend on the

speaker's intonation. However, looking at all three sentences together

reveals several possible combinations of TOPIC and FOCUS. The common

thread of this paragraph is the act of giving and thus provides 'is with

the THEME. The THEME could change over time as more sentences are

added.

(20) They all warted to help someon~e.

(21) Thoy all had finally repaid their debts.

2

The addition of sentence (20) would change the THEME to 'generosity'.

Adding sentence (21) instead, the THEME is probably 'paybacks'. One of

the strengths of Functional Grammar lies in the ability to look at a

group of sentences and provide an overall meaning to the

predications. [Ref. 2:pp. 127-1323

With the addition of the pragmatic functions, it is possible to

obtain a fully specified predication. The following example using

sentence (22) shows how a sentence is taken from its sentential fori to

a fully specified predication.

K- (22) John gave the big red book to the sweet little girl on Tuesday.

.* The sentence is based on the predication for 'give'..

(23) give E(Xl:Animate(X1)) (X2)
V AG GO

(X3:Animate(X3)) 3
REC ACTION

Adding the satellite (Yl:time-period(Y1)TIME to (23) results in the

extended predication:

(24) {give [(Xl:Animate(X1)) (X2)
V AG GO

(X3:Animate(X3)) 3 (Yl:time-per(Y1)) }
REC ACTION TIME

The terms are then inserted into (24) resulting in the following

predication.

(25) {give [(dlXl:John (X1))
V N AG-SUBJ

(dlX2:book (X2)(dlX4:red (X3)(dlX5:big (X5))))
-N GOA

(dlX3:girl (X3)(dlX6:little (X6)
N A

"'" (dIX7:sweet (X7)))) (dlYl:Tuesday (Y1)) }
A REC ACTION N TIME

*26

..

V.

Next the pragmatic functions, TOPIC and FOCUS, are assigned to (25)

resulting in the fully specified predication:

(26) (give C(diXl:John (XD)
V N AG-SUBJ-TOP

(dlX2:book (X2)(dlX4:red (X3)(dlXS:big (X5)))
N A A GO

(dlX3:girl (X3)(dlX6:little (X6)
N A

". (dlX7:sweet (X7)))) I (dlYl:Tuesday (Y1)) }
A REC-FOC ACTION N TIME

E. EXPRESSION RULES

• "-'Once a fully specified predication has been achieved, a means for

mapping the elements of the predication onto a linguistic expression is

required. A set of language dependent expression rules provide a means

of accomplishing this. Although many types of expression rules exist,

they can be generally divided into three groups: case marking, word

- order, and intonation. These rules work together to form the linguistic

.a expression.

"'a, 1. Case Markinq

Each of the syntactic, semantic, pragmatic, and operator markings

gives a clue as to how the sentence will appear. The term -,perator

(ldXl: elephant) would map to 'the'. Had it been (2dXl: elephart), it

would have mapped into 'the two' and 'elephant' would cha~ne to

'elephants'. Using syntactic and semantic mharking and the Semantic

Function Hierarchy provides more rules. For example, if a term is

marked as AGENT but not SUBJECT, the preposition 'by' will be mapped

onto the term. Having a term marked as AGENT and SUBJECT would ind.cate

27

'a.

N

that the sentence begins with the SUBJ-AGENT and therefore does not

need the preposition 'by'. Verbs are also affected by case marking. The

different tenses and the use of auxiliary verbs are triggered by

expression rules.ERef. 2:pp. 158-1613

2. Word Order

Functional Grammar provides a language independent preferred

order of constituents (LIPOC) which form another section of the

expression rules. LIPOC can be expressed as

PROcl PRO (NP (NPP (V < NP (PNP (SUB

where:

PROcl = Clitic Pronoun
PRO = Pronoun
NP = Noun Phrase
NPP = Postpositional Noun Phrase
V = Verb
PNP = Prepositional Noun Phrase

1 . SUB = Subordinate Clause

An example of where this ordering is apparent is shown below.

(27) The man in the uniform gave a ticket to the boy.

where:

NP = The man
NPP = in the uniform

V =gave
NP = a ticket
PNP = to the boy

Most sentences do not contain all of the constituents, but the

constituents that are present conform to LIPOC. Additionally, languages

have a syntactic ordering. The ordering of English is

Subject-Verb-Object (SVO). [Ref. 2:pp. 192-194]

|A..°

m-." ..- 28

3. Intonation

The pragmatic function TOPIC and FOCUS provide the information to

give the proper intonation to the sentence. The predication in (1)

would result in the sentence in (2).

(28) (drive E(dlXl:John) 2
V-FOC N AG-SUBJ-TOP ACTION

(Yl:Chicago) }

N LOC

(29) John DROVE to Chicago.

Of course, sentence (29) is not the only interpretation of the

predication in (28). In (29), the past tense of give was used. (30) and

(31) are also possible interpretations.

(30) John WILL DRIVE to Chicago.

(31) John DRIVES to Chicago.

These rules can be grouped together to provide a means of mapping

the predication onto the linguistic expression. Although not in

standard Backus Naur Form (BNF), the rules follow a similar format. The

following rules illustrate this concept.

-iX1 -) the indifinite article "a" or "an".

-dX1 -) the definite article "the".

-d2Xl -) the number "two".

Figure 2. 1 summarizes the organization of a Functional Grammar and

shows how the concepts outlined above are related. [Ref. 2 :p. 23]

3d -

derived basic basnic derived
prod prod trrd

ormatio framesm terms term. or

nuc predicate

TERMS

1PREDICATE FRAMES

FIGURE 2 PFUNC IATRAIAO RGNIATO

sytati

30gme

prgai

III. PROGRAM DESCRIPTION

To develop a program which will process natural language using

Functional Grammar requires looking at Functional Grammar from a

completely different view than was explained in Chapter II. In Chapter

II, the placement of terms into their proper syntactic, semantic, arnd

pragmatic argument positions was done from a linguist's perspective. A

linguist selects the various functions by looking at the sentence arnd

deciding intuitively what role each word in the sentence plays. He

* accomplishes this by means of his background in language. It is the

duplication of this thinking process in the computer that the program

which has been developed attempts to attain. Many constraints must be

* imposed in order to keep this project manageable. The approach taker

* and constraints imposed are discussed below. The program fol~ows the

* general flow shown in Figure 3.1. It is designed to read a paragraph,

convert each sentence into Functional Grammar notation, and then

V ascertain the pragmatic constituents of the sentence, in particular the

overall theme of the paragraph.

CONTROL
I UTILITY

DATABASE

INPUT I PREDICATION1 PRAMTC OUTPU
[ASSIGNMENT ASSIGNMENT

£ Figure 3.1 Program Flow

31

A. APPROACH

1. Control

q The CONTROL module acts as the traffic director of the pro'gramn.

It starts the program, prompts the user to get the input file, arnd

sends the input file to the INPUT module. The INPUT module is a

straightforward application of an input routine found in

Proarammina in Prolou [Ref. 8], which places the paragraph

into a list of lists. Each sentence is a list arid each word or

punctuation mark is an element of that list. When the list is complete,

the CONTROL module sends the list to the PREDICATION module where each

* sentence is converted into Functional Grammar notation. The predication

is then passed to the PRAGMATICS module where the pragmatic functions

are assigned. Control then sends the resulting predication to the

OUTPUT module for presentation to the user.

2. Predication Assignmnent

The PREDICATION module receives the list of sentences and puts

them into Functional Grammar notation. Doing this requires that the

sentence be looked at word by word. In a Funct ioral Grammar, each

sentence is based on a verb, which determines the required semantic

arguments. Terms are then inserted into the semantic argument slots.

This provides a convenient division of the sentence for processing. The

sentence can be looked at as a series of clauses, each cause

containing a noun term. In sentence (1), the clauses have been~

underlined to illustrate the division.

* (1) John gave the book to Mary in the library.

ai32

The first task of the program is to divide the sentence into clauses

and then process each clause in turn. A term list is maintained

throughout the processing of the sentence to store the clauses. A

Predication list is also maintained throughout the processing. The term

list has the following format.

[Term, Code, Adj]

Code is further formatted as follows.

[Syn, Sem, Def, Num, Prep, Pos]

where:

Syn = syntax (noun,verb,adjective)

Sem = semantics (agent,goal,recipient,..etc)

Def = definite/indefinite

Num = number

Prep = preposition

Pos = position

The 'Adj' slot is used to store adjectives or referent clauses. A noun

term is placed into the list with the term in the 'Term' slot, an 'n'

in the 'Syn' slot, a number in the 'Position' slot, and an empty set

indicator in the 'Adj' slot. The rest of the slots contain ':' for 'not

assigned'. After a clause is processed, many of the slots will be

filled.

Once the term has been placed in the term list, the clause

leading up to the term is processed word by word. If the word is an

adjective, it is placed in the 'Adj' slot. The adjective has the same

format as the noun term, that is, Eadjective,Code,Adj]. Determiners,

numbers, and prepositions are all stored in the code list of the

33

e:.

J.%

current term. For example, the partial sentence (2) results in the term

notation in (3).

(2) The red box in the drawer...

(3) [box,[n,z,d,z,z,3],[red,[a,z,zz,z,2],

[drawer, En, z,d, z, in, 63, []131

As can be seen, adjectives and referent phrases can nested in the 'Adj'

slot. Adjectives are placed in the term list in the clause placement

module. Referent phrases are placed there later.

If a word is a verb, the open predication for that verb is

placed in the predication list. The open predication is in the

- following format.

[verb, [v,state,z,z,z,pos], [att,sem,att,sem,...att,sera3]

The code list is similar to the one for noun terms. The third element

of the verb list is Semantics. It contains each of the verb's semantic

arguments with their corresponding attributes. For example, the

semantics for the verb 'give' is shown below.

* [human, ag, any, go, animate, rec]

Particular circumstances will be encountered that require

special processing. These can be discovered at the clause-process

level. If a sentence contains a series of terms, such as in sentence

-" . (4), the series will be treated as a single term.

(4) John, Jack, and Bill have new cars.

Since a series of words used in this manner must perform the same

semantic function, the program processes the clause using the first

term of the series and then recombines the terms after the clause is

processed.

34

a% ~.

"' - . -. '." " . - --- ? ' ...-P -- ' -' . " .. " , -' .. -' ... ,- ,.. ''- " • '-1- . / ,. 1 { - - '

In some instances, the pragmatic functions THEME and TAIL are

readily apparent and should be processed as such. Left dislocated

sentences, such as (5) show the theme. Right disciocated sentences,

such as (6) give the Tail.

(5) As for Bill, he already owns a car.

(6) 1 like her, my wife.

When these situations are encountered the relevant clause will be saved

outside of the term list.

When all of the terms have been placed in the term list arnd the

verbs have been placed in the predication list, two resolution checks

are made. The predication list is checked for multiple predicates and

the term list is checked for pronouns. If a sentence has more than one

verb as in sentence (7), one of the verbs must be an auxilary verb. The

auxiliary verb is therefore not needed and is discarded arid the

remaining verb is used for the predication.

(7) John was given the book by Mary.

In the case of sentence (7), give is used. Consequently the auxiliary

verb (was) is discarded.

Next, the term list is searched for pronouns. Pronouns are used

frequently in natural language. If used properly, the term they are

used in place of will often be apparent. In the case of nominative

pronouns (referred to as case 1 pronouns), the most likely referent is

the AGENT of the previous sentence. This is illustrated in sertences

(83) and (9) .

* . (8) John carried the book home.

(9) He read it after dinner.

-4-5

A- A-.Y -. :~-. ~th~<i*.~<. 1 ~~§§u; -. *

In the case of objective pronouns (case 2 pronouns), a similar relation

exists, this time with the recipient or beneficiary of the previous

statement as shown in sentences (10) and (11).

(10) John gave the book to Bill.

(11) It was an ideal present for him.

The use of 'it' in (9) and (11) should be noted. In most situations,

'it' will refer to the goal of the previous sentence. In both pairs of

sentences 'it' referred to 'book'. The program replaces the pronouns

with the terms they represent in accordance with the guidelines

mentioned above.

The program is now ready for syntactic and semiantic funct ion

assignment, which are done concurrently. It is accomplished by the set

of 'assign' rules. The rules were designed with the following

principles in mind.

" SVO- English is an SVO language (Subject-Verb-Object). Therefore

all sentences will have their syntactic functions in that order.

" SFH - As discussed in Chapter II, there are definite positioning

rules and relationships between the syntactic and semnrtic

functions.

* Attributes- every semantic function has certain attributes to which

it must adhere. For example, in the predication for 'give', the

AGENT must be a human. This is an imnplemnentat ion dependent

restriction. These attributes can be clearly defined.

*Prepositions- Each semantic function uses a distinct set of

prepositions. Although the sets are not mutually exclusive, they

lower the range of possibilities. The prepositions used for this

program's database and their semantic uses are shown in Figure 3.2.

*Referents- A clause positioned after the subject clause but before

the verb necessarily refers to the subject.

Prepositions

A AA AA B B BBBBD FF I I I ND00P TTT UU WW W
B B FGT EE E EE YUOR N NN EN V AHO00N NI I I
0G0T A FH L NS RRO0 S TA E SR W DT TT T
U V E 1 0 I E I I M 1I0R R T0 PE IHH H
T ER S RN W AD N D U R RL I C

T E D T E G E 6 D N U
H H T

AG X
GOAL
REC X X

0BEN X X
INST X X
SOR X
DIR X X
TIME X X X X X X XXX X X XX X
LOC X X X X XX XX XX X X XX X X

Figure 3.2 Preposition-Semantic Relationships

Using all of the above principles, the semantic and syntactic

functions can be pinpointed. An example of the use of the principles

follows using sentence (12).

(12) The man in the library gave the book to Mary.

Prior to entering the function assignment module, the program will have

provided the following terms.

(man, En, z, d,z, z, 2), E

[library, In, z,d, z, in,5J, I]]

* - tbook,[n,z,d,z,z,,8),E)J

(Mary, En, z,d, z, z,to, 10), IJ3

37

- ~ ~ ~ ~ ~ ~ W --- w~~-r . -v ~- - .~ -, I r .W -7rr ~ w rJ.

The predicate will be:

.V. [give, Ev,action,z,z,z,6, Ehuman,AG,any,GO,animate,REC)J

The terms are looked at in the order they appear in the sentence.

The first term (man), has a position before the verb and its

attribute matches all semantic functions. Its position makes it the

SUBJECT, but at this point its semantic function is unresolved. It is

assigned temporarily as SUBJECT and as AGENT, since AGENT is the first

semantic function. The second term (library), also has a position

before the verb. Since the first term is the SUBJECT, the second term

acts as a referent to the first term. It is therefore placed in the

'Adj' slot of the term 'man'. This results in the following partiallly

filled predication.

[[give, Ev, action, z, z, z,6,

I [man, In, z, d, z, z, 23,

U(library, In,z,d,z,in,5, (J)),SSUBJAG,

any, GO, animate, REC)

The third clause (book), is the first clause after the verb, which is

the object position. An OBJECT is assigned when the semantic function

AGENT acts as SUBJECT, in accordance with Table 2.2. Since that is the

case in this example, 'book' is assigned as OBJECT. Additionally,

'book' matches only the attribute of the semantic function GOAL. Any

RECIPIENT or AGENT used after the verb must always have a preposition.

'Book' does not have a rreposition. It is therefore assigned the

semantic function of GOAL. The last term (Mary), has a position after

the verb, matches all atributes, and has the preposition 'to'. Fi@ure

.. 3.2 reveals that 'to' is used with RECIPIENT, DIRECTION, and TIME. Mary

4.

38

4-.

-..s, + ,

therefore must be assigned as RECIPIENT, since the other semantic

functions do not exist in this predication. The resultant predication

%.1 is shown below.

[give, [v, action, z, zz, 6],

S[[man, In, z, d, z,z, 2,

[[library, In, z,d, z,in, 5], []]], SUBJAG,

[book, [n,z,d,z,z,8], []],OBJGO,

[Mary, [n, z, d, z, z, to, 103, []], REC]3

* It should be noted that the program makes assignments

temporarily as was the case in the assignment above of the first term.

In this regard, Prolog's backtracking techniques provide the proper

mechanism to achieve the trial and error method required. At any point

in the assignment process that a match cannot be made, the program

backtracks until it finds a good permutation. Should there be more

terms left over when the predicate's semantic functions have been

assigned, these terms will be assigned as satellites and placed in the

*D extended predication. Once the predication has been assigned, it is

sent to the PRAGMATICS ASSIGNMENT module.

Syntactic/Semantic Funct ions

SUBJ OBJ AG GO REC BEN

TOPIC X X
TOPIC X
FOCUS X X

Pragmatic FOCUS X X
Functions FOCUS X X

FOCUS X X
FOCUS X X
FOCUS X X

Figure 3.3 Internal Pragmatic Assignments

39

3. Pracmatics Assignment

eltdToe internal pragmatic functions, TOPIC and FOCUSfare directly

relaed o te sntaticand ematicassgnmnts Ifa term is

assinedas AGENT as well as SUBJECT or as just the AGENT with no

syntactic function, that term is most likely the TOPIC. Figure 3.3~

shows other relationships which indicate a probable pragmatic function

assignment.

The external pragmatic functions, THEME and TAIL, are assigned

quite differently. Certainly, if a THEME clause or a TAIL clause was

passed into this section of the program, as discussed earlier, that

clause would automatically be assigned the THEME or TAIL accordingly.

In most cases, however, this will not be the case. Without the benefit

of intonation in written work, a word count approach is used. At the

end of each sentence, the nouns, verbs, and adjectives are coun~ted.

They are placed in a list which is maintained throughout the program.

As new words are used, they are added to the list. As words are used

subsequently, their count is increased. Additionally, concept words are

examined. Many words suggest a concept. For instance, the words happy,

grin, playground, and giggle all suggest the concept of pleasure. After

each word is added to the list or updated, it is compared to the

concept lists. If it appears there, that concept is added to the word

count list. At the end of each sentence, the word count list is sorted

and the first two words on the list become the THEME arnd TAIL,

respectively. This may seem rather arbitrary and it is, but it must be

understood that external pragmatic functions are just that, external.

An individual sentence may not provide an external function. The

40Z

external functions are normally found by examining a group of several

sentences to determine an overall subject. It is this subject for which

the program is searching.

B. CONSTRAINTS

The design of a natural language processor using Functional Grammar

is an ambitious one. To maintain a scope that is large enough to

demonstrate the principles of Functional Grammar yet small enough to

complete in a limited timeframe required the imposition of several

constraints. This program will process simple and compound sentences,

but only ones with simple grammatical expressions. Sentences using

0 verbs in the infinitive form or sentences using more than two verbs

* such as sentence (13) are not supported.

(13) The book is to be given to Mary by John.

Prepositions were limited to the ones shown in Figure 3.2. Compound

prepositions such as 'according to' or 'because of' arnd phrasal

prepositions such as 'as far as' or 'in spite of' were not used.

As was explained in Chapter II, Functional Grammar utilizes four

states of affairs. This program processes only those verbs in the

action and state groups. Action was chosen because it is the state that

is discussed most often in Functional Grammar literature and it

accounts for most of the sentences in the English language. State was a

logical second choice because it represents those verbs that are

non-dynamic and uncontrolled, which is the opposite of action verbs.

Reducing the states of affairs also reduced the semantic functions. Dik

discusses some 24 different functions, but this program is limited to

41

I~j 2 x .

the 10 functions shown in Figure 3.2. Many words can have more than one

syntactic meaning. A common example is the group of words ending in

ling', which may be used as adjectives, verbs, or nouns. This program

only addresses single usage of these words. To limit the number of verb

forms, only past tense verbs were used. The database for the program

was made only large enough to support the above constraints.

These constraints do not represent a failure of FG to process the

whole of natural language. The extensive backtracking and look ahead

facilities to process the many compound terms, odd constructs, etc. are

available in Prolog. It is necessary only to write the many rules

required to cover all situations. However, the trade-off is program

size. The program would be a very large one, with an equally large

database, a situation typical of almost all natural language

processors.

442

K_ -1

IV. PROG3RAM RESULTS

To demonstrate the capability of this program the text used must

test the various sentence configurations and provide an overall theme

for a given paragraph. Three test runs are discussed which accomplish

this task. The computer output for these tests are found in Appendices

B, C, and D. The following paragraph was used for the first test.

~. The setting was a brisk, Autumn day. The park was near the
river. Jack carried his gun in his pocket. As for his partner, Bill
watched the playground from the opposite side. Fallen leaves were
on the ground. The man in the playground raised his hand. Bill

*placed his gloved hand into his pocket. Jack strained his eyes. He
noticed the ominous briefcase on the ground. He heard the ticking.
He waited for the explosion.. The waiting was unnerving.

Table 4.1 Pragmatic Assignments

Pragmatic Functions

Sentence Focus Topic Theme Tail

1 setting n~one day setting
2 park none suspense river
3 gun Jack pocket gun
4 playground Bill partner pleasure

45 leaves none pleasure ground
6 hand man pleasure playground
7 hand Bill pleasure suspense
8 eyes Jack suspense pleasure
'9 briefcase Jack suspense pleasure
10ticking Jack suspense Jack

11 explosion Jack suspense Jack
12 waiting none suspense Jack

Sentences of different types are used and the entire paragraph sets

a mood of suspense without ever actually stating it. The program

assigns the pragmatic functions at the end cf eacn sentence. The

43

results of the first test are found in Appendix B. A listing of the

pragmatic assignments is provided in Table 4.1.

* The internal function assignments are, for the most part, obvious

assignments. In some cases no assignment was made. This occurs in

sentences whose semantic and syntactic assignments do not readily point

to a particular pragmatic function. Sentences such as this are commonly

found in the 'state' state of affairs. Consider the last statement of

the paragraph.

*The waiting was unnerving.

The sentence is about waiting. 'Unnerving' modifies 'waiting'.

* 'Waiting' is the most important irformation in the sentence, tnus

fulfulling the requirement for FOCUS. If unnerving modifies waiting and

waiting is the FOCUS, which term is the TOPIC? Is there a term which

presents the entity about which the predicate predicates something per

Dik's definition of TOPIC? Waiting appears to be a candidate for both

functions. Although there is no set rule which disallows a term from

holding both internal pragmatic functions, it seems unnecessary, at

best. Functional Grammar literature includes few examples of pragmatic

functions irn other than the action state of affairs and thus leaves

open the method of assignment in the other states of affairs. It seems

plausible that there are situations, such as the one described above,

where the pragmatic function FOCUS is sufficient to describe tne

sit uat ion.

* There are other cases in 'state' predications that are unclear.

Consider the second sentence.

* * The park was rear the river.

4. 44

r6.

The program assigned 'park' as FOCUS, using the same reasoning as

above. The clause 'near the river' certainly modifies 'the park'. With

- no further information, the assignment is probably valid. However, add

an accent to 'near the river' and the meaning changes. Is the FOCUS now

'near the river'? Is the TOPIC now 'the park'? Both possible

assignments have merit. Without any extra information, the assignment

of FOCUS is sufficient to show the meaning of the predication.

External functions were arrived at by a word count. As can be seen

in Table 4.1, the THEME and TAIL changed as the program progressed

through the paragraph, finally settling on 'suspense' and 'Jack',

* respectively, near the end of the program. This was the correct

interpretation. A reader should come away from the paragraph with the

overall theme of a suspense situation with Jack as the most prominent

character.

The second test run used the same test paragraph as the first test

run. However, the sixth, ninth, and the tenth sentences were changed to

* the passive voice. As can be seen by comparing the output of this test,

found in Appendix C, to the results of the first test, the only changes

were in the syntactic assignments in the changed sentences. The

pragmatic assignments remained the same as those in the first run.

The third test run, Appendix D, also used the text from the first

run, but changed the order of sentences. Although the THEME and TAIL

* assignments were different from those in the f~rst run due to the

rearrangemient, they were identical from the fifth sentence through the

final assignment. The rearranged paragraph is as follows.

45

The man in playground raised his hand. Jack carried his gun in
his pocket. As for his partner, Bill watched the playground from
the opposite side. The setting was a brisk, Autumn day. The park
was near the river. Fallen leaves were on the ground. Bill placed
his gloved hand into his pocket. Jack strained his eyes. He noticed
the ominous briefcase on the ground. He heard the ticking. He
waited for the explosion. The waiting was unnerving.

Although the program arrived at the proper external pragmatic

assignments, the assignments early in the paragraph are inaccurate.

What is not shown in Table 4.1 is that until the ninth sentence no

THEME had a clear cut majority. In some cases, THEME and TAIL were

equal, with the determining factor being which word came first in the

word ccount list. A weighted count was considered, but rejected for lack

of a valid weight system. Terms that are assigned syntactic functions

as well as semantic functions should get greater consideration for

pragmatic assignment. This, however, does not adequately address verbs.

Verbs form a very important part of our language and need to be

* considered. Looking at prose in general, it would appear that concept

words would very often be the type of word that would be found in the

final THEME assignment. Therefore any weighting system must consider

* concept words. Many such issues must be addressed before an adequate

* weighting system can be attained. In general, each word and group of

.M~. sen~tences must be looked at individually with rno weighting system. in

this specific case, the method this program uses for assigning internal

pragmatic functions is adequate, providing a large number of sentences

are being evaluated.

Expanding this program by adding an interactive question and answer

section would greatly enhance its capability. This would give the

program intonat ion of words which provide more clues to the assignment

46

of the pragmatic functions. Additionally, this program is essentially a

pattern-matching mechanism designed to take advantage of some of the

more obvious grammar rules of the English language. In addition to

these rules, a set of inference rules could be added whereby the

combination of syntactic, semantic and internal pragmatic functions

over a 2-3 sentence range would suggest a possible theme. It must be

noted that these improvements bring with them a large overhead. Asking

questions means having to accept a larger number of words as input,

thereby increasing the size of the database. More importantly,, the

design of the questions would involve an extremely large number of

individual cases. Knowing which question to ask is as important as

getting the right answer.

47

pJ_

V. CONCLUSIONS

What should be the purpose of producing a natural language

processor? Research in this area has produced processors that evaluate

many sentences, each sentence evoking a particlular response from the

computer. Even some micro-computer game programs provide limited

'natural language' responses to computer generated questions. Given

Dik's premise that a grammar should be a means of social interaction, a

processor should be able to read a generous amount of text and return

some insightful meaning that the user might otherwise not have noticed.

This paper presented a program which shows the feasibility of using

Functional Grammar in natural language processing. Reading a paragraph

and producing a THEME is a small achievement when compared to the types

of applications that are possible. One possible application of this

procedure is as a psychologist's assistant. Consider the task of dream

anyalysis. Dreams may suggest to a psychologist certain reasons for a

patient's problems. However, the theme of the patient's dreams may be

abstract or obscure and present an enigma to the psychologist. This

program would require a large database combined with a program capable

of interaction between the user and database. The interaction is

necessary to provide the intonation missing in a straight text

analyzer. Knowing which word is emphasized in a sentence will help

determine the meaning of the sentence. Having such a tool may evoke

concepts that were not obvious to the psychologist. These concepts

48

4,.

might hold the key to the patient's disorder or at least provide a new

avenue to explore.

Functional Grammar is a suitable vehicle for pursuing such

projects. It is Functional Grammar's view of language as a means of

social interaction that makes it such an attractive method for natural

language processing.

44

APPENDiX A

/ *************CONTROL MODULE

/* The CONTROL module first consults all applicable files. *
-- /* It then calls the INPTIT module which reads in the file, *

/* the PREDICATION module which forms the predication,and *
/* the OUTPUT file which prints out the results. *

go:- fileread,introduction (Text, Out) ,see (Text) ,sentreview (Sentlist) ,seen,
predication (Sentlist, [] ,P , [], Wordcount , [] ,Matrix),
output (Out,Matrix,P,Wordcount).

fileread:- consult (input) ,consult (predication) ,consult (utility),
consult (database) ,consult (pragmatics) ,consult (output).

sentreview(S):- getO(C),sent(C,S).
sent(C,[]):- lastsent(C).
sent(C,[SI S1J):- read in(C,S),sentreview(S 1).

predication ([] ,P,P ,Wc,Wc ,Mat,Mat).
predication(Fl R] ,P,P4,Wc,Wc2,Oldmat,Newmat):

clauseprocess(F ,F,Pj P1,T1,UI,Prag,l) ,resolve(PL,TI,P2 ,T2),
funct assign (P2,T2,P3) ,praguiatics (P3,Wc,Wcl,Prag,Oldmat,Intmat),
predication (R,P3,P4,Wcl ,Wc2,Intmat,Newmat).

introduction (Text ,Out) :- space (10) ,query (Text, Out) ,space (10).

query (Text,Out):- printstring ("This is a natural language processor"),

printstring(" which uses Functional Grammar."1),zil,nl,
printstring("To use, enter the name of the file you wish to have evaluated"),
nl,printstring("followed by a period. ") ,nl,read(Text) ,nl,nl,
printstring ("Enter the name of the output file followed by a period."),
nl,read(Out).

50

/ INPUT

1* The INPUT module reads from a text file. It reads in a sentence *
/ * at a time. Each sentence is placed in a list, with each word or *
1* punctuation mark being one element of the list. *

read in(C,[W Ws]):- readword(C,W,C1) ,restsent(W,C1,Ws).

restsent(W,_j]):- lastword(W),!.
restsent(W,C,WlI Ws]):- readword(C,W1,C1), restsent(W1,C1,Ws).

readword(C,W,G1): single character (C) ,!,name(W, [CI), getO(C1).
readword(C,W,C2): in wozd(C,NewC) ,!,getO(C1) ,restword(C1,Gs,G2),

name(W,[NewC Cs]).
readword(C,W,C2):- geto(C1), readword(G1,W,C2).

restword(C,[NewCl Cs] ,C2): in word (C,NewC) ,!,getO(G 1) ,restword(Cl ,Cs,C2).
restword(C,[],C).

single character(44). 1* ,*
single character(59). /* ;*
single character(58). / *1
single character(63). 1* ?~
single character(33)./ !/
single character(46). 1* .*

in word(C,C):- C>96, C<123. /*a b ... z
in word(C,L):- C>64, C<91, L is C+32. /*A B ... Z
in word(C,C):- C>47, C<58. /*1 2 ... 9
inwyord(39,39).1* 1
in word(45,45). *-1

-. lastword ('.').
lastword('!').
lastword('?').

lastsent(26).

4% 51

/* ** * * PREDICATION DEVELOPMENT *

/* The PREDICATION DEVELOPMENT Module takes as input sentences */
/* from the INPUT module. The sentence is first checked to see if it is a *1
/* question or a declaration. If it is a question, it is put into declaration *1
/* form. The sentence is then passed to the CLAUSE PROCESS section */
/* where the program looks at each word until it finds a term. When a */
/* term is found, the clause upto and including the term is processed, *1
/* which defines the term clause. After all of the term clauses have been */
/* defined, the predication is built in the FUNCTION ASSIGNMENT */
/* module, where the syntactic and semantic assignments are made. The */
/* predication is then sent to the PRAGMATICS ASSIGNMENT module, */
/ * where the pragmatic functions are assigned and the complete predication *1
/* is defined. It is then sent to the OUTPUT module where it is printed
1*on the screen.

--- I ***/*

check__uest([W,Is,N I R] ,[N,IsI R]):- question [W,Is,NI RJ),what(W).
check_uest ([Is,N I R],[N,IsI R]):- question([Is,N RJ).

question ([?I R]).
question([. R]):- fail,!.
question([!I R]):- fail,!.
question([F I R]):- question(R).

.2

52

SI

/ *****************CLAUSE PROCESS
1* The CLAUSE PROCESS module takes a sentence and puts it into *
/* Functional Grammar notation. The output will consist of two lists, the *
/* TERMLIST and the PREDICATION. The TERMLIST is a list of the *
/* terms in the following format. *
/ * [Term, Code], ,RefJ,T erm, Code], ,Refl ,. ..,Term, Code], [Reffq
/* The Term is the term as found in the sentence. The Code is a list of *
1* parameters in the following format. *
/ * [Syntax- Semant ics-N umber- (Definite/ indefinite) -Prepos ition-Position]*/
/* Ref is a list of referents (adjectives) which are listed in the same *
1* format as the termlist. *
1* The sentence is searched until a term is found. Then the clause up to *

/and including the term is looked at word by word in the word-process *
1submodule. If a word is an adjective, it is placed after the term in

1* the Ref section. If it is a preposition, it is placed in the *
/* preposition section of the Code. If it is a number ,article, or a *
1* determinator, the appropriate sections of the Code are changed. The *
1* Code is initiated with "1z" in each section. This will signify that the *

o 1* term does not have an item to fill a particular section. If a verb is *
1* found, the open predication for that verb is placed in the PREDICATION *
1* list. In the case of apparent Theme or Tail, the module will store the *

1applicable term in the variable 'Prag'. This clause will then not be *
/ * processed with the rest of the sentence. *

clauseprocess (Osent,tFirst Sent] ,Predl ,Terml ,Predl ,Terml ,Prag,Prag,P):
end of sentence (First).

clauseprocess (Osent,[First Sent] ,P , [W ,C ,A Ti] ,P2,T4,Prag,Prag2,Pos):
4 conj(First),no more verbs(Sent),

build series (Osent, [Firstj Sent] ,P1,[W ,C,A] ,T2,Pos,Pos1) ,Pos2 is Posl-1,
align~preps(T2,PrepT3) ,red clause (Osent,Pos2,Sent1),
clause.2rocess(Osent,Senti ,Pl1,[T3 Ti] ,P2,T4,Prag,Prag2,Pos 1).

clauseprocess (Osent,[Firstl Sent] ,Pl1,[W,C ,AI Ti] ,P2,T4,Prag,Prag2,Pos):
conj (First) ,no~prev verbs (,Pos,Osent),
build series (Osent, [First] Sent] ,P, ,[W ,C,A] ,T2,Pos,Pos1) ,Pos2 is Posi-i,
align~preps(T2,Prep,T3) ,red clause (Osent,Pos2,Sent 1),
c lause-process (Osent, Sent 1,P 1, [T1T Ti] ,P2,T4,Prag,P rag2,Pos 1).

clauseprocess (Osent, [',i R] ,Pl1,[W ,C,AI Ti] ,P2,T4 ,Prag,Prag2 ,Pos) :- series search(R)
build series (Osent,[','l R ,P 1,[W,C,A] ,T2,Pos,Posi1),
alignypreps(T2 ,Prep,T3) ,Pos2 is Posi- 1,red clause (Osent ,Pos2,Ri),
clause-yrocess(Osent,R,P,[T31 Ti] ,P2,T4,Prag,Prag2,Posi).

clauseprocess(Osent,[','iR] ,Pi,Ti,P2,T2,Prag,Prag2,Pos) :- length(Ti,L),

53

"4 (L=3) ,make theme (T 1,Prag1) ,Posl is Pos+ 1,
clauseprocess(Osent,R,P 1,11,P2,T2,Pragl,Prag2,Posl).

clause..yrocess(Osent,[',1 R],Pl1,T1 ,P2,T2,Prag,Pragl,Pos): make tail (R,Pragl ,Pos).
clauseyprocess (Osent,Sent ,Predl ,Terml ,Predication,Termlist ,Prag,Prag2 ,P):

findterm(Sent,P ,P1) ,select(Osent,P 1,Term),
make term(Terml ,Pl1,Term,Termlist 1),
word-proc(Sent,Predl ,Termlistl,Vl,Tl,P),
red clause (Qsent,P 1,Sent1) ,P2 is P1+1,
clauseprocess(Osent ,Sentl1,V 1,T 1,Predication,Termlist,Prag,Prag2,P2).

series search([',',or$ R]).
-. series search ([','anoIR])

series search(IF,SI R]):- series search([SI R]).

build series(Osent,[Conj R],P1 ,T1,T3,Pos,Pos3): coni (Conj) ,Posl is Pos+ 1,
findterm(R,Posl1,Pos2) ,select (Osent,Pos2,Term) ,make term(Tl1,Pos2 ,Term,T2),
wordyproc(R,P1,T2,P2,T3,Posl)
Pos3 is Pos2+1.

* build series(Osent, [' ,',Conjl R],P1,T1 ,T3,Pos,Pos3): conj (Conj) ,Posl is Pos+2,
findterm(R,Posl1,Pos2) ,select (Osent,Pos2,Term) ,make term (T 1,POS2, Term, T2),
word-Proc(R,P1,T2,P2,T3,Posl),
Pos3 is Pos2+1.

* build series(Osent,[',1RI,P1,T1,T4,Pos,Pos4):- Posi is Pos+1,
findterm(R,Posl ,Pos2) ,select (Osent ,Pos2,Term) ,make term(Tl1,Pos2 ,Term,T2),

.4. word yroc(R,P 1,T2,P2 ,T3,Pos 1) ,red clause (Osent,Pos2,Sent1),
Pos3 is Pos2+ 1,build series (Osent,Sentl1,P2,T3,T4,Pos3,Pos4).

make theme([Term, Syn,SemnI RIj Ri 1,I[Term, [Syn,themeI R]I Ri]1).
make tail (R,TaiI,Pos) :- clauseprocess (R, [FI RI 1] 1,P2, Tail, (J ,Pos).

alignyreps([Trm,[Sy,Sm,D,N,PrpI R] ,Ad Ri] ,Prp,[Trm,[Sy,SmD,N,Prpl R] ,Ad Ri1):-
null(R1).

alignyreps([Trm,[Sy,Sm,D,N,Al R] ,Ad Ri] ,Prp,[Trm,[Sy,Sm,D,N ,Prp RJ ,AdI Ri]):-
M~'1m'alignpreps(R1,Prp,R1).

findtermQ(F irstj Rest] ,Pos,Pos) :- is term(F irst).
findterm([FI S],P,Pi) :- P2 is P+1,findterm(S,P2,P1).

make term(Termlist,P,F irst, [First, [n,Z Z,z IP] [11 Terinlist]).

wordyproc ([Fl S],V,T,V,T,P) :- last term(F ,T).
wordproc([FI S],V,[T,Cod] R1,V1,T1,P):- is determiner(F,D),

change list (D,4,Cod, Codl1)1P 1 is P+1,word~roc(S,V,[T,Godl R],Vi,Ti,Pi).
wordyroc([FI SJ,V,[T,GodJRJ,VI ,Ti,P):- is number (F,N),change list (N,3,GCod,Codl1)

4--. 54

'r

change list (d,4,Codl,Cod2),P1I is P+1,
word..proc(S,V,[T,Cod~l R],Vl,T1,P1).

word_ yroc([FI SI,V,[T,Cod,AdjI RI,V1,T1,P):- is adverb(F) ,Pl is P+1,
wordproc(S,V,[T,Cod,Adj,F,ad,z,z,z,ad,P1,,[I R] ,V1,T1 ,P1).

wordproc ([F SI ,V, [Ta,Tb ,AdjlIJ,V1,Tl1,P): is adjective(F),
make adj(F,P,Adj,Adjl) ,add adj(S,S1,P,P1,Adjl,Adj2),Pos is P1+1,
wordproc (S1,V,[Ta,Tb,Adj2I RJ ,V1,T1,Pos).

wordproc ([FI SJ,V,[T,Cod]R] ,V1 ,T1,P): isprep(F) ,change list (F,5,Cod,Codl),
P1 is P+1,wordproc(S,V,[T,CodlI RJ,V1,T1,P1).

wordproc ([Fl SI,V,T,V1 ,T2,P): is verb (F ,Verb) ,makeypred (Verb,P ,Pred,T,T 1),
P1 is P+1,wordproc(S,[PredlV],Tl,V1,T2,P1).

fill term(A,W):- attribute (A,L),member(W,L).
fill_term(A,W):- a kind of(A,B),till term(B,W).

last term(First,[First Rest]).

makeypred (Verb, 1,Pred,T 1,T2): make term (T1, ,1,you,T2) ,findpred(Verb,2,Pred).
*makepred(Verb,P ,Pred,T1,T1): findpred(Verb,P,Pred).

add adj (',',A,BI R] ,Sent,P ,P1 ,Adjl1,Adj2): Pos is P +2,make adj (A,Pos,Adj 1,Adj2),
add adj ABj R] ,Sent,Pos,P1 ,Adj2,Adj3).

add adj(R,R,P,P,A,A).

make adj (Term,P,] ,[Term, a,z,z,z,z,P] I[IDD
make adj (Term,P ,[A1 ,C,Adj] ,[Al1,C,Newadj]): make adj (Term,P,Adj,Newadj).

* findpred(Verb,P, [Verb, [v,State,O,z,z,P] ,Semanticsj):
* pred(Verb,State,Semantics).

no more-verbs([]).
no more verbs([F1 R]):- is verb (F,Any),!,fail.
no more verbs ([Fl R]):- no more verbs (R).

noyprev verbs (N,N, Sent).
noprev verbs (N,N 1 ,[FI R]): is verb (F,Any) ,!,fail.
no~prev verbs (N,N 1,[F1 R]): N2 is N+1,noyprev verbs(N2,N1,R).

end of sentence(.)-

55


~~~ ~PREDICATION RESOLUTION * * * /

/* The PREDICATION RESOLUTION module takes as input the
/* PREDICATION list and the TERMLIST. It searches the TERMLIST *
/* for pronouns. If a pronoun is found, it is changed to the proper term *
/* that it refers to, according to the pronoun rules. Then the *
/* PREDICATION list is scanned to see if there is more than one verb. *
/* If so, then one of the verbs must be an auxiliary verb and is deleted. *
/* The output is the new TERMLIST and the new PREDICATION. *

resolve (P ,T,P 1 ,T 1): multpred(P,P1) ,pronouns(P1,T,Ti).

mulpred([[V,[A,B,o R11 Rill R21,[[V,[A,B,1I RuJ Rill R2]):- aux(V) ,lastpred(R2).
multpred([[V,[A,B,q R11 Ri] ,[Vl,[D,E,o~ R311 R4]1 R2],[[V,[A,B,1j Rul RilI R2]):

aux( Vi).
multypred( [[V, [A,B,q RuJ Rill R2J ,[[ VA,B,iI RJ Rill R21).

lastyred([]).
lastyred([[V,[A,B,ij RJ Rill R21).
morepred([[V,[A,B,q Rul Rill R21).
add one([[ V,[A,B,q. R~j RilI R2],[[V,[A,B,1I Rul Rill R2]).

* ~pronouns(V,Jf)

* pronouns(V,I[Tl,C,AdI Rl Ri], [[Term,C ,AdjI R2]1 R3]): casel (Ti),
find last sem(V,ag,Term) ,pronouns( V,R,R2) ,pronouns (V,R1 ,R3).

pronouns(V,[[Ti,C,Adi RIj Ri] ,[tTerm,C,AdI R2]I R3]): case2(Ti),
find last sem(V,rec,Term) ,pronouns( V,R,R2) ,pronouns (V,Ri ,R3).

pronouns(V,[[Ti,C,AdI R11 Ri],[[Term,C,AdI R21 R3]): case2(Ti),
find last sem(V,ben,Term) ,pronouns( V,R,R2) ,pronouns (V,Ri ,R3).

pronouns(V,[it,C,AdI RI,[Term,C,AdI Ri]):- find last sem(V,go,Term),
pronouns(V,R,R 1).

-~ pronouns(V,ITi,C,AdI R] ,[Term,C,AdI Ri]):- casei(Ti),
find last sem(V ,subjag,Term) ,pronouns (V ,R,R1).

pronouns(V,[Ti,C,AdI R] ,lTerm,C,Adj Ri]):- casei(Ti) ,find last sem(V,ag,Term),
pronouns(V,R,Ri).

pronouns(V, [Ti1,C,Adj RI, [Term, C,Adj Ri]1):- case2(Ti) ,find last sem(V,rec,Term),
pronouns(V,R,R 1).

pronouns(V,[Ti,C,Adj R],[Terzn,C,Adj Ri]):- case2(Ti),
find last sem(V,objrec,Term) ,pronouns(V,R,Ri).

pronouns(V,[Ti,C,AdI R] ,[Term,C,Adi Ri]):- case2(Ti),
fn_last e(V ,subjrec,Tern) ,pronouns(V,R,Ri).

56
%i



pronouns(V,[T1,C,Adji ],[Term,C ,AdjIlRi]):- case2(T1) ,find last sem(V,ben,Term),
pronouns(V,R,R1).

pronouns(V,jTl,C,Adj R] ,[Term,C ,Adj Ri]):- case2(T1),
find last sem(V,objben,Term) ,pronouns( V,R,R1).

pronouns(V,[T1,C ,AdjI RJ ,[Term,C ,Adjj Ri]):- case2(Ti),
find last_sem(V ,subjben,Term) ,pronouns (V,R,R1).

pronouns(V,IIT,C,AdI R11 Ri] ,[T,C,AdI R2]1 R3]) :- pronouns (V,R,R2),
pronouns(V,R1 ,R3).

pronouns(V,IT,C,AdI R] ,[T,C,Adjj Ri1):- pronouns(V,R,R1).

find last sem lVerbil1 Rest],Type,Term):- last sent (Rest,Type,Term).
last sentQ ([Verb, Code,Senil Rj Ri] ,Type,Term): search sem( Sem,Type,Term).
sea;rch sem([[T,C,A] ,Sl R],S,T).
searchsem( A ,SI R],Type,Term): search sem(R,Type,Term).

/************FUNCTION ASSIGNMENT************

f* The FUNCTION ASSIGNMENT module takes as input the TERMLIST ~
*/ * and the PREDICATION. Using the preposition rules, the attribute *

P matching rules, and the semantic function hierarchy rules, the semantics *
/and syntax are assigned. The TERMLIST is looked at term by term.

/* Each term is compared to each term in the PREDICATION until a *
/match is found. The. term is first compared to the attribute of each term *
/open predication. When a match is found, then the preposition is
/checked for appropriateness. If it is ok, then the syntax rules are
/applied, and the resultant semantic and syntactic assignment is
1applied. If at any point in the above procedure there is no match, *

/* that term is abandoned and the next one is checked. Any extra *
1clauses after the predication is filled are defined as satellites *
/and are placed in the extended predication.

* funct assign([ [[Verb, Code,Semanticsl R] ,T , [[Verb, Code,Newsem,Ext] I R]):
select (Code,6,Verbpos) ,rev term(T,] ,T 1),
assign (Ti ,Semantics ,Verbpos,i ,Newsem, [J,Ext).

d assign ([],S,V,C,S,E,E).

57



assign( I[Term,Code,AdI Ruj Ri] ,Semantics,Verbpos,Ctr,Newsem,Extl1,Ext3):
assign( [TermCode,AdjI Ri] ,Seraantics,Verbpos ,Ctr,Semi ,Ext1 ,Ext2),
add back series ( [TermCode,Adjl R] ,Semi ,Newsem,Ext2,Ext3).

"4' assign( ITerm,CodAdj R] ,Semantics,Verbpos,Ctr,NewsemExtl1,Ext3):
select (Cod,5,ad) ,ext end ( Term,Cod,AdjI ,Extl ,Ext2) ,Ctrl is Ctr+ 1,
assign (R,Semantics,Verbpos ,Ctrl ,Newsem,Ext2,Ext3).

assign ( Term,Code,AdjI R] ,Semant ics ,Verbpos,1 ,Newsem,Extl1,Ext2):
select (Code,6,Pos) ,Pos<Verbpos,select (Code,5,Prep),
attni match (Term,Code,Adj ,Semantics ,Prep ,Sem1), ,Ctrl1 is 1 +1,
assign (R,Seml,Verbpos,Ctrl,Newsem,Extl1,Ext2).

-~ - assign ([Term, Code,AdjI R] ,Semantics,Verbpos ,Ctr,Newsem,Extl1,Ext2):
select ( Code,6,Pos) ,Pos <Verbpos,referent ( Term, Code,AdiI ,Semant ics, Semi),
Ctrl is Ctr+l1,assign (R,Seml ,Verbpos,Ctrl Newsem,Extl1,Ext2).

* 'I assign ( ITerm,Code,AdjI R] ,Semantics,Verbpos ,Ctr,Newsem,Extl1,Ext3):
711 is the-.subjag(Semantics)j isobj_assgn(Semantics) ,is sem filled (Semantics),

extend ([Term,Code,Adj] ,Extl1,Ext2), Ctrl1 is Ctr+ 1,
assign (R,Semantics,Verbpos,Ctrl ,Newsem,Ext2 ,Ext3).

assign ( JTerm,Code,Adjl RI ,Semantics ,Verbpos,Ctr,Newsem,Extl1,Ext2):
is the-subjag(Semantics) ,is obj assgn( Semantics) ,select (Code,5 ,Prep),
attplace( [Term,Code,Adj] ,Prep,Semantics,Seml) ,Ctrl is Gtr+ 1,
assign (R ,Seml ,Verbpos ,Ctr,Newsem,Extl ,Ext2).

assign ( Term,Code,Adj RI ,Semantics ,Verbpos,Ctr,Newsem,Extl1,Ext2):
is the subjag (Semantics),
select (Gode,5,Prep) ,obj_assign( [Term, Code,Adj] ,Prep,Semantics, Semi),
Ctrl is Ctr+l1,assign(R,Seml ,Verbpos,CtrlNewsem,Extl,Ext2).

assign ( Term, Code,Adj R] ,Semantics ,Verbpos ,Ctr,Newsem,Extl1,Ext3):
isemfiled (Semantics),

extend ([Term, Code, Ad] J,Extl ,Ext2) ,Ctrl1 is Ctr+ 1,
assign (R,Semantics,Verbpos,Ctrl ,Newsem,Ext2,Ext3).

* assign( [Term, Code, Adjj RJ ,Semantics,Verbpos,Ctr,Newsem,Extl1,Ext2):
select (Code,5, Prep),
attylace( QTerm, Code, AdjI ,Prep,Semant ics, Sem1), ,Ctrl1 is Ctr+ 1,
assign (R,Seml ,Verbpos,Ctr,Newsem,Extl ,Ext2).

assign( [Term, Code,Adjj RJ ,Semaritics,Verbpos,Ctr,NewsemExtl1,Ext3):
£extend([Term, Code, Adj] Extl1,Ext2), ,Ctrl1 is Ctr+1,

V. 58



assign (R,Semantics ,Verbpos,Ctrl ,Newsem,Ext2,Ext3).

attni match(Term,Code,Adj ,[Att,SemOR] ,Prep , [[Term,Code,AdjI],NewseinlRI):-
is attribute (Term,Att) ,prep (Prep, Sem) ,subj (Sem,Newsem).

attri match (Term,Code,Adj, [Att,Sem RI ,Prep, Att,Ser4 R i]):-
attni match (Term,Code,Adj ,R,Prep ,Rl).-

attplace( [Term,Code,AdjJ ,Prep, [Att,Sernj RI, [[Term, Code,AdiI ,Newsem R]):

atis ttribute (Term,Att) ,prep (Prep,Newsem).
_tplace (Term,Prep, [Att,SewJ RJ ,[Att,Semj Ri]) :-attplace(Term,Prep,R,R1).

subj(ag,subjag).
subj (rec ,subjrec).
subj (ben,subjben).
subj(go,subj go).
subj (O,subjO).

41 .obj (go,objgo).
obj(rec,objrec).

* obj (ben,objben).

referent (Term, [Word,Sem RI, [Wordi ,Sem R]) :- subj (Any,Sem),
add ref (Word, Term, Wordi).

referent (Term, [Word,Sem RJ , [Word,SemJ Ri]):- referent (Term,R,R1).

add ref([Term, Code, [] J],Ref, [Term, Code,Refl).
add ref( [Term,Code,Adj] ,Ref, [Term,Code,Adj 1]):- add ref(Adj ,RefAdj 1).

is the subjag([Att,subjagj ).
is-the-subjag[Att,Sen R]):- is the subjag(R).

is obj_assgn([Att,Sem R]):- obj(Any,Sem).
is_o2bj_assgn([Att,Sem R]):- is obj_assgn(R).

is sem filled([]).
is_sem filled([Att,Semj R]):- is list(Att),is sem filled(R).

extend ( Term, Code,Adj], , [ [[Term, Code,Ad] ,adverb]): select (Gode,5,ad).
extend( [Term, Code,Adi,[ ,[Term,Code,Adj] ,Sern]): select (Code,5,P rep),

prep (Prep ,Sem) ,sem attribute (Sem,Att) ,is attribute (Term,Att).
extend (Term,[ Sati1,Senj RI, Satl1,Sem Ri]):- extend(Term,R,R1).

obj assign ( Tern, Code,Adj ],Prep, [A tt, Sem R] , [[Term, Code,Adj] ,Newsein] RI):-
is attribute (Te rm,Att) ,prep (Prep, Sem) ,obj (Sem,Newsem).

* obj assign (Term,Prep,[Att,Sernj RI,[Att,Seznl R1I):- obj assign (Term,Prep,R,R 1).

50

.



renew(P,P).

add back series( [Term,Code,Adi R] ,[ITerm,Code,AdiI ,SemJ R i] [[I[Term,Code,AdI R]
SemiA R 1I,Extl,Extl).

add back series ( [Terin,Code,Adjj RJ,4] 4] ,[[Term,Code,Adj] ,Sem Ri],
[ITerm,Code,AdI RUJ,Sem Ri]).

add back series ([Term,Code,Adj RI ,II,R2,[[A,B,C] ,Sem] Ri],[[A,B,C] ,Sem] R3]):
add back series ([Term,Code,Adj R], 0,R2,Ri,R3).

add back series( [Term,Code,AdjI R] ,IA,B,CI ,Sew Rl] ,[[A,B,C] ,Semi R2] ,Exti,Ext2):
add back series ([Term, Code,AdjI R],R 1,R2,Extl1,Ext2).

V 60

........................... ...... .......



PRAGMATICS ASSIGNMENT *

/* The PRAGMATICS ASSIGNMENT module recieves the predication */
/* for the sentence plus the running wordcount. It first does an update */

/* of the wordcount. Next it assigns the pragmatic functions. This *1
/* is done by first determining the internal functions and then the
/* external functions. Topic and Focus are determined by looking
-* at which words have both a syntactic as well as semantic */

count list to see which concepts are most utilized. When the *1

/* pragmatics have been as.signed, they are stored in a running
/- matrix which maintains by sentence the following information. */
/ * Sent #/Focus/Topic/Theme/Tail * /

pragmatics (Predication,Wc,Wc2,Prags,Oldmatrix,Newmatrix):-
word.count (Predication,Prags,Wc,Wc 1),
prag_assign (Predication,Wc 1,Wc2,Prags,Focus,Topic,Theme,Tail),
saveprags (Oldmatrix,Focus,Topic,Theme,Tail,Newmatrix).

/*********************** WORD COUNT *

. word count( [Verb, Code,Semantics R]j Ri] ,Prags, Wc, Wc6):-
check and add(Verb,Wc,Wcl),
concept add (Verb,Wc 1,Wc 2) ,term count (Semantics,Wc2,Wc3),
termcount (R,Wc3,Wc4),adjcount(Prags,Wc4,Wc5),
remove(Wc5,Wc6).

[:....:.term count ([[]]WcWc).

term count ([],WcWc).
termcount ([[[Term,Cod,Adj],Sern R]l,Wc,Wc3):- check and add(Term,Wc,Wcl),

concept add(Term,Wcl,Wc2),term.count (R,Wc2,Wc3).
term count([[[Term,Cod,Adjl R]],SenAI R1],Wc,Wc5):-check and add(Term,Wc,Wcl),

concept add(Term,Wci,Wc2),adjcount(Adj,Wc2,Wc3),
term count (R,Wc3,Wc4),term count (RI,Wc4,Wc5).

,1 %term count ([[Term,Code,Adj],SeniR],Wc,Wc4) :- check and add(Term,Wc,Wcl),
concept add (Term,Wc 1,Wc2),adjcount (Adj, Wc2,Wc3),
term count(R, Wc3 Wc4).

check andadd([],Wc,Wc).
check and add(Word,[Word,CountlR],[Word,Ct11R]):- Cti is Count + 1.
check and add(Word,[],[Word,1I).

- *1

, .'



check and add (Word, [Other, Countl R] , [Other,Countl Ri]):
check and add( Word,R,R1).

adjc.ountI1,Wc, We).
adjcount ([Term,Cod,AdjJ ,Wc ,Wc 3):- check and add (Term,Wc ,Wc 1),

concept add (Terzn,Wc1, Wc2) ,adj_cfount (Adj, Wc2, Wc3).

concept add (Term, Wc ,Wc 1):- is like (Term,Concept),
check--and add (Concept,Wc,Wc 1).

concept add (Term, Wc,Wc).

remove([],[]).
remove( [Word,Count R ,R1) :- case3( Word) ,remove(R,R1).
remove( [Word,Countl R ,R1) :- aux( Word) ,remove(R,R1).
remove([Word,Count R],[ Word,Count RI]):- remove(R,R1).

~~ ~PRAGMATICS ASSIGNMENT*********/

prag assign ([[Verb,Code,Seman tics R11 R1], ,We,Wcl,Prags,Focus,Topic,Theme,Tail):
internal (Semantics,Focus,Topic) ,word sort(Wc ,[] ,Wc 1),
external (We 1 ,Prags,Theme,Tail).

internal ( Sem,Focus,Topic) :- foe find ( Sem,Focus) ,top_find(Sem,Topic).

foe find([],none).
foe findQ ([Term, Code,Adjj ,Sem R] ,Term) :- foe match (Sem).
foe find([Term,Sexnl R],Foeus):- foc find(R,Focus).

foc match(objgo).
foe match(objrec).

4., foe rnatch(objben).
foe match(subjgo).
foe match(subjrec).
foe mate h(subjben).
foe match (sub jO).

top find( [],none).
top find ( [Term, Code,AdjJ ,SemJ H] ,Term) :- top match( Sem).
top find ( Term, Sem R] ,Topie) :- top find (R,Topie).

top_match(subjag).
top_match(ag).

62



%external( [Theme,N 1,Tail,N21 R , [] ,Theme,Tail).
external ( Tail,N1I RI,[Theme,[S ,themelIR21 ,Theme,Tail): not (Tail=Theme).
external( W 1,N 1,Tail,N1 R] , [Theme, [S ,themel RiII R2] ,Theme,Tail).
external ( [W 1 ,N ,hem,N21 R ,Til Ru,Theme, oTl).al)
external( [ 1Theme,Nj ,[al R],ThemeR,Tail)not Them=Tal)

~~ SAVE PRAGMATICS IN MATRIX

-~~ saveprags ([],Focus,Topic ,Theme,Tail, [[1 ,Focus,Topic ,Theme,Tail]).
saveprags (Matrix,Focus,Topic,Theme,Tail,Final): first of first (Matrix,Num),

Numi is Num+l1,append([[Numl ,Focus,Topic,ThemeTail],Matrix,Final).

first of first(lFirst Rest],Number):- select (First, 1,Number).

63



*************************** OUTPUT *

/* The OUTPUT module takes the Pragmatics matrix, the Word */
/* count list, and the Predication from the PRAGMATICS */
/* ASSIGNMENT module The information is formatted so that the */
/* pragmatic functions are printed for each sentence, the */
/* predication verb and semantic functions are printed, and */
/* the final word count is printed. *1I**************************************************************/

output (Out,Matrix,Pred,Wc):- tell (Out),nl,nl,nl,title,heading,matrix(Matrix),
nl,nl,pred label,nl,predprint(Pred),nl,nl,told.

title:- tab( 15),first(Title) ,printstring(Title),nl,tab( 15),
underline(Line),bord(Line,8),nl,nl.

heading:- second(Heading),printstring (Heading),secadd (Head 1),
printstring(Headl) ,nl,third (More) ,printstring(More),
thiradd(Morl),printstring(Morl),nl,nl,nl,label(Label),rhh(Label),nl.

matrix([]).
matrix([Firs Rest]):- matrix(Rest),rhh(First).

first ("Pragmatic Assessment of Paragraph").
underline('---').
second("The paragraph submitted has been transormed").
secadd("into Functional Grammar notation.").
third("The pragmatic functions were then determined").
thiradd("and are provided below").
label(['Sentence','Focus','Topic',T'heme','Tail']).

rhh([]):-nl.
rhh([HI T]):- colprint(H),rhh(T).

phh([]):- nl.
phh([HI T]):- write(H),tab(1),phh(T).

bord(Word,O):-nl.
bord(Word,Count):- write(Word),Ctl is Count-l,bord(Word,Ctl).

space(O):- nl.
space(S1):- nl,S2 is S1-1,space(S2).

64

L :,", .",



predprint ()
predprint( [IVerb, Code,Semantics,ExtI R]): nl,underline (Line),

write(Line) ,nl,write (Verb),
nucprint (Semantics) ,extyprint (Ext) ,predyprint (R).

.2 nucprint([]):- iii.
riucprint ([[[Term,Code,AdjlI1J,SenilRiJ): nI,tab( 12) ,colyprint (Sem),

colprint(Term) ,adjyprint (Adj) ,more nuc (R) ,nucprint (Ri).
nucprint ([[Term, Code,Adj] ,SemI RI):- nlitab (12) ,colyprint (Sem),

colyprint (Term) ,adprint (Adj) ,nucprint (R).

adjprint ([Term,Code,Adj] ):-colprint (Term) ,ad.Lprint (Adj).

4, extprint([I).-
extprint ([[Term, Code,Adj] ,Semj ):- tab (12) ,c ol~print (Sem),

col~print(Term) ,adprint (Adj) ,extprint (R).

pad(O).

pad(N):- tab(1),N1 is N-1,pad(Nl).

colyprint (Word):- write (Word) ,name (Word,List) ,length (List,Len) ,N is 12-Len,
pad (N).

printstring( [1).
printstring( [HI T]) :- put (H) ,printstring(T).

more nuc([]).
more nuc ( Term,Code,AdjI R]) :- nl,tab (1 2) ,colprint (Term),

adjprint(Adj) ,more nuc(R).

pred label:- lab (Label) ,rhh (Label) ,nl.

lab (['VERB','SEM/ SYN','TERM','REFERENTS']).

'V 65

. . . . . .-.. .



1* The UTILITY module contains several list processing rules *
1*which are used throughout the other modules. *

member(X,[]):- fail,!.
* member(X,[X I).

member(X, IY] L]) :- not(X=Y) ,member(X,L).

sem xnember(F,[]):- fail.
sem, member(F,[[[F J Rjl).
sem member(F,[F RIR11).
sem member(F,[T1 R],SeinjRi]):- not(F=T1),semrnember(F,R1).

insert itemI, [],L,L).
insert item(X,Y,[X3 LIAYl L]).
insert itemYI L[ZLi)- not(X=Z),insert item(X,Y,L,Li).

change list (X,1,[Y1 L],[X LI).
change list(X,Z,Y1jL,[Yj1 i):- Zi is Z-1,change list (X,Z 1,L,L 1).

append([],L,L).
append([XA Li] ,L2,X1 L3]) :- append (L 1,L2,L3).

select( [X U ,i ,X).
select (QAX L] ,I,Y) :- Ii is I- 1,select (L,Ii ,Y).

red clause (Sent,O,Sent).
red clause([FI Sent],P,Sent1) :- Pi is P-i,red clause(Sent,Pi,Senti).

is listQD-)
ishlst( [j.

rev term([],MM).
rev term(IT,C,AI R],M,L):- rev term(R,[T,C,AI M],L).

word sort ([J ,N,N).
word sort( [W ,C R] ,Qld,New) :- sort (W ,C,Old,Int) ,word sort (R,Int,New).

sort(WiC1'f4,WiCi).
sort (W,C, [W2,C21 RiI[Wi,C 1,W2,C1 Ri]):- Ci> =C2.
sort (W 1,C 1,[W2,CAj RI,[ W2,C21 R21):- sort(W1,Gi,R1,R2).



/ *****************DATABASE *************

1* The DATABASE module contains the words and their relationships *
/* necessary to adequately process a section of text. This database *
1* is limited to the words found in the test text. It is also limited *
1* to past tense and to words in the action and process states of
1* affairs. A limited number of semantic cases are used. These cases *

are the most common cases found in the states of affairs used. *

a kind of (animate ,human).
a kind of (animate ,animal).
a kind of(sor,loc).

a type of(human, [mary johnjack ,bill,man,woman,child,boy ,girl,partner]).
a type of (animal, [dog,cat ,horse,cow ).
a type of(tim, [hour,day ,minute,year,while,hours ,days ,minutes ,years]).
a type of(dir, [north,south,east,west ,way ,park]).
atype o(loc ,[library ,street ,house,building,park ,river,bridge,playground,

side,ground,pocket]).
a type of(thing, [book ,leaves ,hand,eyes ,briefcase,gun]).
a_ype of(event, [setting,ticking,explosion,waiting,unnerving]).

is term(F):- a type of(A,L),metrber(F,L).
is term(F) :- pro list (L) ,member(F,L).
is_a djective( F):- adjilist (L) ,member(F ,L).
is adjective(F) :- possessive (L) ,member (F,L).
isyprep(F) :- preplist(L) ,member(F ,L).

* ispron(F) :- pro list (L) ,member(F,L).
is attribute (adverb,adverb).
is attribute (A,any).
is attribute (A,B):- a type of(B,L),member(A,L).
is attribute (A,B):- a kind of(B,C),is attribute(A,C).
is adverb (F):- adverb list (L) ,member(F,L).

is determiner (the,d).
is determiner (this,d).
is-determiner(that,d).
is determiner (a,d).
is determiner (an,d).
is determiner (some, i).
is determniner (these,d).

-- is deemner (those,d).

67

-------------------------------------.... .... ....-. n



is number(one,I).
is nuxnber(two,2).

is~ umber(three,3).
isnumber (four ,4).

is number(five,5).
inumber(six,6).

is~ umber(seven,7).
inumber(eight,8).
is umber(nine,g).

is number (ten, 10).

conj (and).
conj (or).
conj (but).

adjilist ([brisk,autumn,opposite,fallen,gloved,ominous ,mine,yours,his ,hersours,
theirs]).

preplist ([by,to,from,in,near,across,towards ,,s ,for,on,into]).

pro list ( [i,you,he,she,we,they,it ,me,him,her,us,them,myselfyourself,
himselfherselfourselves,themselves,itself]).

adverb list ([quietly ,softly,unnervingi).

pred (give,action, [human,ag,any,go,animate,rec]).
pred(drive,action,[human,ag]).

* pred(walk,action,[animate,ag]).
pred (approach,action, [anirnate.,ag,loc ,loc]).
pred (raise,action, [animate ag any goD).
pred (p lace, ac tion, [an imate, ag,any,go, loc, loci).
pred(strain,action,[animate,ag,any,go]).
pred(see,action,[animate,ag,any,goj).
pred (not ice, act ion, [animate, ag,any,go]).
pred (hear, ac tion,[an imate, ag,any,gol).
pred (w ait, act ion,[an imate,ag, any,go]).
pred (is,st ate,Iany,O]).
pred(watch,action,[animate,ag,any,go]).
pred (carry,action, [humanag,any ,go]).

aux(is).
aux(have).

68



is verb (gave,give).
is verb(was,is).
is verb (were ,is )
is verb (drove,drive).
is verb (wallced,walk).
is verb (approached,approach).
is verb (raised,raise).
isverb(placed,place).
is verb (strained,strain).
is verb (saw,see).

-~ is verb (heard,hear).
is verb (waited ,wait).
is verb (watched,watch).
is verb (carried,carry).
is verb (noticed ,notice).

is like (Term,Concept): subject (Concept,List) ,member(Term,List).
subject (generosity, [give,deliver,loan,lendj).
subject (suspense, [river,briefcase,ticking,explosion,wait,brisk,gloved,

ominous,raise,strain,wait,quietly ,softly,unnervingj).
subject (movement, drive,walk,approach,raise,place]).
subject (pleasure, [park,river,leaves ,playground]).
subject (calxness,[river,leaves,fallen,quietly,softly]) .

what (what).
-"F..what(who).

what(why).
what (where).
what (when).
what (how).

cas l

casel (io).
casel(yo).
casel(she).

casel(we).
casel(they).

.V4',

case2(me).
N-: case2 (you).

case2(him).
case2(her).
case2(us).
case2(them).

7?- e



case3 (mme).
case3 (yours).
case3(his).
case3(hers).
case3(ours).

.4 case3 (theirs).

prep (about,tim).
prep (after,tim).
prep (before,tim).
prep (during,tim).
prep (through,tim).
prep (until,tim).
prep (above,loc).
prep (against,loc).
prep (behind,Ioc).
prep (below,loc).

* prep (beneath,loc).
prep (beside,loc).
prep(in,Ioc).
prep (inside,loc).
prep (near,loc).
prep (under,loc).
prep (under,Ioc).
prep (within,loc).

*prep (toward,dir).
prep (with ,ins).

prep (without,ins).
prep(into,loc).
prep(at,tim).
prep(at,loc).
prep(in,tim).
prep(in,loc).
prep(over,tim).
prep(over,loc).
prep (past,tim).
prep (past,loc).
prep(for,go).
prep (for,ben).

* prep(for,ben).
prep (for,tim).
prep (from ,sor).
prep(from,tim).
prep(by,ag).

70



-rep-by-t-m)

prep(by,tioc).
prep (by,o).
prep (to,r).
prep(to,dr).
prep(to,tim).
prep(ton,be).
prep(on,loc).

prep (ad,adverb).
prep(z,z).
prep(z,A).

sem attribute (adverb,adverb).
sem attribute (Z,any).-
sem attribute (tim,tim).

4 sem attribute (dir,dir).
sem attribute (loc,loc).
sem attribute (sor,sor).

0 add object (rec,objrec).
add object (ben,objben).
add object (go,objgo).
add object([,[]).

71



APPENDIX B

Pragmatic Assessment of Paragraph

The paragraph submitted has been transormed into Functional Grammar notation.
The pragmatic functions were then determined and are provided below.

Sentence Focus Topic Theme Tail

1 setting none day setting
,- 2 park none suspense river

3 gun jack poket gun
4 playground bill partner pleasure
5 leaves none pleasure ground
6 hand man pleasure playground
7 hand bill pleasure suspense
8 eyes jack suspense pleasure
9 briefcase jack suspense pleasure

10 ticking jack suspense jack
11 explosion jack suspense jack
12 waiting none suspense jack

PREDICATIONS

VERB SYN/SEM TERM REFERENTS

is
subjO waiting
z unnerving

wait
subjag jack
objgo explosion

hear
subjag jack
objgo ticking

notice
subjag "ack
objgo triefcase ominous
loc ground

strain
subjag jack
objgo eyes his

place subjag bill

bgo hand his gloved
ob pocket his

--,?72

.)



VERB SYN/SEM TERM REFERENTS

raise
subjag man glayground
objgo hand

is
subjO leaves fallen
10C ground

watch
subjag bill
objgo playground
sor side opposite

subjag jack

objgo gun his
loc pocket his

is
subjO park
lbc river

is
subjO setting
z day brisk autumn

73

7-



_V.

APPENDIX C

Pragmatic Assessment of Paragraph

The paragraph submitted has been transormed into Functional Grammar notation.
The pragmatic functions were then determined and are provided below.

Sentence Focus Topic Theme Tail

1 setting none day setting
2 park none suspense river
3 gun jack pocket unplay partner pleasure
5 leaves none pleasure ground
6 hand man pleasure playground
7 hand bill pleasure suspense
8 eyes jack suspense pleasure
9 briefcase jack suspense pleasure

10 ticking jack suspense jack
11 explosion jack suspense jack
12 waiting none suspense jack

PREDICATIONS

VERB SEM/SYN TERM REFERENTS

is
subjO waiting
z unnerving

wait
subjag jack
objgo explosion

hear
ag jack
subjgo ticking

notice
ag "ack
subjgo briefcase ominous
loc ground

strain
subjag jack
objgo eyes his

place subjag bill

objgo hand his gloved
loc pocket his

74

"4



VERB SYN/SEM TERM REFERENTS

raise
man

s g hand
loc playground

is
subjO leaves fallen
lbc ground

watch
subjag bill
objgo playground
sor side opposite

carry subjag jack

objgo gun his
loc pocket his

is
subjO park
lbc river

is
subjO setting
z day brisk autumn

5'

-.5

75

-4



APPENDIX D

Pragmatic Assessment of Paragraph

The paragraph submitted has been transormed into Functional Grammar notation.
"he pragmatic functions were then determined and are provided below.

Sentence Focus Topic Theme Tail

1 hand man hand pleasure
2 gun jck pocket gun
3 playground bll partner pleasure
4 setting none playground pleasure
5 ark none pleasure suspense
6 leaves none pleasure playground
7 hand bill pleasure suspense
8 eyes jack suspense pleasure
9 briefcase jack suspense pleasure

10 ticking jack suspense jack
11 explosion jack suspense jack
12 waiting none suspense jack

PREDICATIONS

VERB SEM/SYN TERM REFERENTS

is
subjO waiting
z unnerving

wait
subjag jack
objgo explosion

hear subjag 
jack

obigo ticking

notice
subjag jack
objgo briefcase ominous
loc ground

strain
subjag jack
objgo eyes his

place subjag bill

objgo hand his gloved
Ic pocket his

76



VERB SYN/SEM TERM REFERENTS

is
subjO leaves fallen
bc ground

is
subjO park
lbc river

is
subjO setting
z day brisk autumn

watch
subjag bill
objgo playground
sor side opposite

subjag jack

objgo gun his
loc pocket his

raise
subjag man t!ayground
objgo hand is

77

f



-7

LIST OF REFERENCES

1. Winograd, Terry, Understanding Natural Language, Academic
Press, 1972.

2. Dik, Simon C., Functional Grammar, Academic Press, 1981.

3. Chomsky, Noam, Syntactic Structures, Mouton & Co., 1957.

4. Chomsky, Noam, Aspects of the Theory of Syntax, The MIT Press,
1965.

5. Hayes, Curtis W., Jacob Ornstein, and William W. Gage,
ABC's of Language and Linguistics, Institute of Modern
Languages, Inc., 1977.

6. Fillmore, Charles, "A Case For Case," Universals in
Linguistic Theory ed. Bach, Emmon and Robert T. Harms,
Holt, Rinehart, and Winston, 1968.

-K. 7. Schank, Roger C., "Identifications of Conceptualizations

Underlying Natural Language," Computer Models of Thought and
Language, ed. Schank, Roger and Kenneth Mark Colby,
W.H. Freeman and Company, 1973.

8. Clocksin, W.F. and C.S. Mellish,Prouramminq in Prolog,
Springer-Verlay, 1981.

78 %



BIBLIOGRAPHY

A Bolinger, Dwight, Aspects of Language, Harcourt Brace Jovanovich,

nc, 1975.

Chomsky, Noam, The Log ical Structure of Ling uistic Theory, Plenum
Press, 1977.

Dik, Simon C. ed.,Advances in Functional Grammar, Foris
Publications, 1983.

Dik, Simon C., Studies in Functional Grammar, Academic Press, 1980~.

Dineen, Francis P., An Introduction to General Linguistics, Holt,
Rinehart, and Winston, Inc., 1967.

Gleason, H.A.jr, LinAuistics and English Grammar, Holt, Rinehart,
and Winston, Inc., 1965.

Hoekstra, Teun, Harry van der Huist, and Michael Moortgat eds.,
Perspectives in Functional Grammar, Foris Publications, 1981.

Lyons, John, Introduction to Theoretical Linguistics, Cambridge
University Press, 1968.

Schank, Roger, "The Conceptual Analysis of Natural Language,"
Natural Language Processing, ed. Rustin, Randall, Algorithmics
Press, Ic, 1973.

Wardhaugh,Ronald, Introduction to Linguistics, Institute of Modern
Languages, McGraw Hill, 1977.

Winston, Patrick Henry, Artificial Intelliene, Addison-Wesley
Publishing Company, 1984.

* 79

yT



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5100

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Curricular Officer, Code 371
Computer Technology
Naval Postgraduate School
Monterey, California 93943-5100

5. Roger 6. Marshall 5
Department of Computer Science
U.S. Naval Academy
Annapolis, Maryland 21402-5002

4. Lcdr Fred 6. Orchard a
USS Joseph Strauss (DDG-16)
Fleet Post Office,
San Francisco, California 96678-1246

4s



DT I(

4,I t E DN ~:-~~1J


